Generalizing Instant Runoff Voting to Allow Indifferences

Théo Delemazure and Dominik Peters
CNRS, LAMSADE, Université Paris Dauphine - PSL
2024-07-09 • ACM EC 2024

Introduction

Instant Runoff Voting (IRV) is a widely used single-winner voting rule based on (possibly truncated) linear orders. Many electoral reform advocates prefer this method.

Alaska / Maine / NYC / SF / ... 萍: Australia (since 1918) \square Ireland
This method repeatedly eliminates the candidate that is ranked top least often, until only one candidate remains who is the winner.

We ask: what is the right way to generalize IRV to weak orders (allowing indifferences)?
We consider two natural options:

- Approval-IRV
- Split-IRV

Approval-IRV

We propose Approval-IRV. At each step, interpret each vote as an approval vote for its top-ranked uneliminated alternatives. Delete the candidate with the fewest approvals.

Figure 1: An example of Approval-IRV with voters v_{1}, \ldots, v_{5}. The first eliminated alternative is c, which is ranked on top only once. Then d is eliminated, and finally a wins the majority vote against b. Thus, a is the winner.

Alternative method: Split-IRV where a vote with 3 top-ranked alternatives gives $\frac{1}{3}$ points to these alternatives, and the lowest-scoring alternative is deleted. Equivalent to running IRV after the replacement operation.

History

Multiwinner Split-STV was developed in series of articles in the journal Voting Matters.
Brian L. Meek. "A new approach to the Single Transferable Vote. Paper II: The problem of non-transferable votes". In: Voting matters (1 1994). urL: https://www.votingmatters.org.uk/issue1/P2.htm
C. Hugh E. Warren. "STV and equality of preference". In: Voting matters (7 1996). URL: https://www.votingmatters. org.uk/issue7/P5.htm
Split-STV "was first used by the John Muir Trust © (for Trustee elections) in 1998, and by the London Mathematical Society ¿" in 1999 " and both still use Split-STV today

Denis Mollison. "Fair votes in practice". In: arXiv:2303.15310 (2023). URL: https://arxiv.org/abs/2303.15310
The only previous scholarly discussion of Approval-STV is by Janson (2016).
Svante Janson. "Phragmén's and Thiele's election methods". In: arXiv:1611.08826 (2016). URL: https://arxiv.org/abs/ 1611.08826

Since about 1996, there have been sporadic discussions of Approval-IRV on internet forums, see e.g., the election-methods mailing list (1996 [$\mathrm{C}^{\nearrow}, 2004 \mathrm{C}^{\top}$), electowiki c^{\nearrow}, and reddit (2019 [T). A 2004 webtool © implements both Approval-IRV and Split-IRV.

Reasons for using Weak Orders

- A compromise between Ranked Choice Voting and Approval Voting. Fair'vote (iacion
- More expressive, when voters have true indifferences. (Australia forces no indifferences.)
- More expressive, when there are many candidates but at most 5 ranks on the ballot.
- Less effort, especially true for preferences like $a \succ b \succ\{c, d, e, f\} \succ g$.
- Better alignment with candidate campaigns, which typically only ask to be ranked \#1, for example in NYC.

Lindsey Cormack. "More choices, more problems? Ranked choice voting errors in New York City". In: American Politics Research (2023). URL: https://dominik-peters.de/archive/cormack2023.pdf

- Reduce need for some types of strategic voting.

Alex Small. "Geometric construction of voting methods that protect voters' first choices". In: arXiv:1008.4331 (2010). URL: https://arxiv.org/abs/1008.4331

SF Ballots

(a) Two top choices

(b) Vetoing a candidate

(c) An approval vote

Figure 2: Examples of ballots that can be interpreted as weak orders (2019 mayoral election in San Francisco).

SF: Locations of weak order ballots

(a) Map of San Francisco election precincts, colored by the fraction of votes that could be interpreted as a weak order with indifferences.

(b) Among election precincts, median household income (horizontal axis) is negatively correlated with percent of ballots showing a weak order (vertical axis; $r=-0.4$, $p<0.001$).

Figure 3: Ballot data from the 2019 mayoral election in San Francisco.

- Compare Approval-IRV and Split-IRV axiomatically.
- Independence of Clones
- Majority condition
- Monotonicity
- Characterize Approval-IRV as the "right" generalization.
- Multi-winner Approval-STV preserves proportionality axioms.
- Experiments.

Independence of Clones

Figure 4: Examples of $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ being a clone set or not being a clone set.

Definition

Independence of clones requires that when we add clones $x_{1} x_{2} x_{3}$ of a candidate x, 1. non-clones $a b c$ are not affected (they win iff they previously won), and
2. if x was a winner, then one of its clones $x_{1} x_{2} x_{3}$ is a winner.
T. Nicolaus Tideman. "Independence of clones as a criterion for voting rules". In: Social Choice and Welfare 4 (1987), pp. 185-206. DOI: 10.1007/BF00433944. URL: https://www.condorcet.vote/view/DOCS/IndependenceofClones.pdf

Independence of Clones

9	4	2
acc	(b)	c
b	a	a
	c	c^{\prime}

Figure 5: Split-IRV fails independence of clones.

Theorem

Approval-IRV is independent of clones.

Argument similar to linear-order version.
We give a rigorous proof by induction; also shows that linear-order IRV satisfies independence of clones.

Majority Condition

47%	4%	25%	24%
a b	a	c	d
c	b	b	b
d	c	d	c
	d	a	a

Figure 6: A problem with electing majority alternatives.

Linear-order IRV satisfies the majority criterion: if a majority of voters places a in top position, then a wins.

How to generalize to weak orders? Maybe "if some candidate is ranked top by a majority, then such a candidate should win"?

In the figure, this implies a is the winner. But 49% say $b \succ a$ and only 4% say $a \succ b$.

Bad axiom! Need a different generalization.
Approval-IRV: b (also Condorcet winner) Split-IRV: a

Respect for Cohesive Majorities

9	5	5	8	10
(a)b(c)	a(b)	a(c)	b)c d	(d)
d	d	d	a	$a b c$
	c	b		

Figure 7: Split-IRV violates respect for cohesive majorities because it eliminates a, then b and c, and elects d.

Respect for cohesive majorities:
If a majority of voters rank c on top ("cohesive") then the winner must be ranked top by at least one member of that majority.

Theorem

Approval-IRV respects cohesive majorities.

Characterization within Elimination Scoring Rules

Theorem

Approval-IRV is the only elimination scoring rule satisfying independence of clones and respect for cohesive majorities.

The axioms are independent.
An elimination scoring rule sequentially eliminates the lowest-scoring candidate, where the scores are positional scores (weakly decreasing) that may be different for each order type τ (specifying the sizes of the indifference classes).

Examples: different versions of Borda scoring
Approval: $\tau \mapsto(1,0, \ldots, 0)$
Split: $\tau \mapsto\left(1 / \tau_{1}, 0, \ldots, 0\right)$.

τ_{1111}	τ_{121}	τ_{13}
a	a	a
b	b c	b c d
c	d	
d		

Figure 8: Examples of weak orders with different order types.

Indifference Monotonicity

A c-hover is the following type of transformation:

$$
\begin{array}{rlrl}
& C_{1} \succ \cdots \succ C_{j} \\
\longmapsto \quad & C_{1} \succ \cdots \succ C_{j} \cup\{c\} & \succ c\} & \succ C_{j+2} \succ \cdots \succ C_{k} \\
\succ C_{j+2} \succ \cdots \succ C_{k}
\end{array}
$$

Note: c must initially lie in a singleton indifference class.

Definition (Indifference monotonicity)

If $c \in f(P)$ is a winner and we apply some c-hovers, then
c remains a winner.

Theorem

Approval-IRV is the only elimination scoring rule that agrees with IRV on profiles of linear orders and that is indifference monotonic.

The axioms are independent.

Multiwinner Version: STV

We can define a weak-order version of the multi-winner rule STV, giving Approval-STV. STV gives proportional representation, which has been formalized via the Proportionality for Solid Coalition property.
It has been generalized to weak orders (PJR-style).
Haris Aziz and Barton E. Lee. "The expanding approvals rule: improving proportional representation and monotonicity". In: Social Choice and Welfare 54 (2020), pp. 1-45. Dol: 10.1007/s00355-019-01208-3. URL: https://www.cse.unsw. edu.au/~haziz/prsolution.pdf

Definition (Generalized PSC, informal)

If a coalition of $\alpha \%$ of voters all agree that $T \succcurlyeq C \backslash T$, then at least $\alpha \%$ of the k winners should come from T (or equivalently liked candidates).

Theorem

Approval-STV satisfies generalized PSC for weak orders.
Proof of some independent interest also for the linear-order variant.

Experiments

Figure 9: Average Borda score of the winner (normalized by dividing by n) for various datasets.

Figure 10: Frequency of agreement between the rule and linear-order IRV for various datasets.

Experiments

Figure 11: Map of elections, showing the difference in Borda score between the Approval-IRV and Split-IRV winner in the coin-flip model (blue: approval better than split).

Niclas Boehmer et al. "Understanding Distance Measures Among Elections". In: Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI). 2022, pp. 102-108. DoI: 10.24963/ijcai.2022/15

Conclusion

	Approval-IRV	Split-IRV
Independence of clones	\checkmark	x
Respecting cohesive majorities	\checkmark	x
Indifference monotonicity	\checkmark	x
Quality of winner	+	\circ
Same winner as linear order	-	often
Generalized PSC	\checkmark	X

Table 1: Comparison of properties satisfied by the rules.

