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Abstract

The winner determination problems of many attractive
multi-winner voting rules are NP-complete. However,
they often admit polynomial-time algorithms when re-
stricting inputs to be single-peaked. Commonly, such
algorithms employ dynamic programming along the un-
derlying axis. We introduce a new technique: carefully
chosen integer linear programming (IP) formulations for
certain voting problems admit an LP relaxation which
is totally unimodular if preferences are single-peaked,
and which thus admits an integral optimal solution. This
technique gives efficient algorithms for finding optimal
committees under Proportional Approval Voting (PAV)
and the Chamberlin–Courant rule with single-peaked
preferences, as well as for certain OWA-based rules. For
PAV, this is the first technique able to efficiently find an
optimal committee when preferences are single-peaked.
An advantage of our approach is that no special-purpose
algorithm needs to be used to exploit structure in the
input preferences: any standard IP solver will terminate
in the first iteration if the input is single-peaked, and will
continue to work otherwise.

1 Introduction
In a departure from classical voting theory, a growing litera-
ture from computational social choice has recently studied
multi-winner voting rules (Faliszewski et al. 2017b). Given
diverse preferences of a collection of agents, instead of identi-
fying a single best alternative, we are aiming for a (fixed-size)
set of alternatives that jointly are able to represent the pref-
erences of the agents best. Such procedures are useful in a
wide variety of circumstances: obvious examples include the
election of a parliament, or of a committee representing the in-
terests of members of an organisation. Other applications can
be found in group recommendation systems, or for making
decisions about which products or services to offer: Which
courses should be offered at a university? Which movies
should be presented on an airline entertainment system?

Several attractive rules for such tasks have been designed
by researchers in political science (e.g., Chamberlin and
Courant 1983, Monroe 1995) and more recently by computer
scientists (Faliszewski et al. 2016a; 2016b; Skowron, Fal-
iszewski, and Lang 2015). Many of these rules are defined in
terms of some objective function: a winning committee is a

set of k candidates that maximises this objective. Unsurpris-
ingly, then, the winner determination problems of such rules
are typically NP-hard (Lu and Boutilier 2011). To tackle
the complexity of these problems, approximation algorithms
(Skowron, Faliszewski, and Slinko 2015) and fixed-parameter
tractability approaches (Betzler, Slinko, and Uhlmann 2013;
Bredereck et al. 2015) have been developed for these prob-
lems, and integer programming formulations have also been
designed for them (Potthoff and Brams 1998).

Another approach seeks to exploit underlying structure in
the preferences reported by the agents (Elkind, Lackner, and
Peters 2017). A particularly influential preference restric-
tion is the notion of single-peaked preferences, due to Black
(1948) and Arrow (1950). In this model, the alternative space
has a one-dimensional structure: alternatives are ordered on a
left-to-right axis; and agents’ preferences are monotonically
decreasing as we move further away from their peak (most-
preferred alternative). In particular, we can expect prefer-
ences to be structured this way when voting over the value of
a numerical quantity (such as a tax rate). While single-peaked
preferences were first employed to escape impossibility re-
sults in social choice theory (Moulin 1991), it also yields posi-
tive algorithmic results: Notably, Betzler et al. (2013) showed
that Chamberlin–Courant’s (1983) multi-winner rule is effi-
ciently computable for single-peaked preferences. This result
can be extended to some other multi-winner voting rules
(Elkind and Ismaili 2015), and to preferences that are single-
crossing, or single-peaked on trees (Skowron et al. 2013;
Elkind, Faliszewski, and Skowron 2014; Peters and Elkind
2016).

The Chamberlin–Courant rule usually takes as input pref-
erences specified by linear orders, i.e., rankings of the can-
didates. An alternative way of specifying preferences is
by approval ballots, where voters submit a set of approved
candidates. Recent work has uncovered a rich variety of
multi-winner voting rules in this framework (Kilgour 2010).
A particularly well-studied rule is Proportional Approval Vot-
ing (PAV) due to Thiele (1895). PAV has particularly nice
axiomatic properties in terms of proportional representation
(Aziz et al. 2017), and has recently been axiomatically charac-
terised as the only consistent extension of d’Hondt’s propor-
tionality criterion for party list elections to the general setting
of approval votes (Lackner and Skowron 2017, see also Brill,
Laslier, and Skowron 2017). Like for Chamberlin–Courant,



the winner determination problem of PAV is NP-complete
(Aziz et al. 2015). For PAV, however, tractability results for
cases of structured preferences have proven somewhat elu-
sive. Elkind and Lackner (2015) have studied this question
in depth, but for single-peaked preferences1 they were only
able to establish that the problem lies in FPT for some natural
parameters, and that it becomes polynomial-time solvable for
a very restrictive subclass of single-peaked approval prefer-
ences. The difficulty is that standard approaches based on
dynamic programming seem to not be powerful enough to
capture the multirepresentation nature of PAV: Under the PAV
rule, voters derive (implicit) utility from potentially many
committee members, whereas in the case of Chamberlin–
Courant, they are only represented by one member of the
committee. This difficulty led Elkind and Lackner (2015)
to conjecture that evaluating PAV is NP-complete even for
single-peaked preferences.

In this paper, we introduce a new technique that allows
evaluating a large class of multi-winner rules in polyno-
mial time if the input preferences are single-peaked. This
class includes PAV; thus we disconfirm Elkind and Lackner’s
conjecture and show that PAV does become tractable with
single-peaked preferences. Other rules in this class include
Chamberlin–Courant, the t-Borda rules (Faliszewski et al.
2017a), and most OWA-based multi-winner rules (Skowron,
Faliszewski, and Lang 2015).

Our technique is based on designing integer linear pro-
gramming formulations for these rules, and proving that these
formulations are totally unimodular in case the input prefer-
ences are single-peaked. Total unimodularity is a condition
on the derminants of the matrix of coefficients appearing in
the constraints of the integer program. Since totally unimod-
ular integer programs are optimally solved by their linear
programming relaxations, these rules are polynomial-time
computable with such inputs. In fact, since all standard IP
solvers first solve the LP relaxation, they will terminate with
the correct answer in their first iteration. If the instance is
not single-peaked, the IP solver might enter further iterations
while solving: our formulations are correct whether or not
the input is single-peaked. This makes it easy to implement
our algorithms, and stands in contrast to algorithms based on
dynamic programming, which are specialised to work only
under the assumption that the input is single-peaked.

Another difference to specialised algorithms (such as the
one due to Betzler et al. 2013) is that we do not need to
know an underlying single-peaked axis of the input profile in
order to solve the integer program in polynomial time. Dy-
namic programs that work along the single-peaked axis need
a preprocessing stage, where we run a recognition algorithm
which constructs a single-peaked axis if one exists. Such al-
gorithms have been designed by Escoffier, Lang, and Öztürk
(2008), Bartholdi III, Tovey, and Trick (1989), and Doignon
and Falmagne (1994), among others. Our algorithms skip
this step, again making implementation easier.

1For approval preferences, single-peakedness requires that there
is a left-to-right ordering of the alternatives so that each approval set
forms an interval of this ordering (Faliszewski et al. 2011; Elkind
and Lackner 2015).

2 Preliminaries
We write [n] = {1, . . . , n}.
Total Unimodularity A matrix A = (aij)ij ∈ Zm×n
with aij ∈ {−1, 0, 1} is called totally unimodular if every
square submatrix B of A has detB ∈ {−1, 0, 1}. The fol-
lowing results are well-known. Proofs and much more about
their theory can be found in the textbook by Schrijver (1998).

Theorem 1. Suppose A ∈ Zm×n is a totally unimodular
matrix, b ∈ Zm is an integral vector of right-hand sides, and
c ∈ Qn is an objective vector. Then the linear program

max cTx subject to Ax 6 b (P)

has an integral optimum solution, which is a vertex of the
polyhedron {x : Ax 6 b}. Thus, the integer linear program

max cTx subject to Ax 6 b, x ∈ Zn (IP)

is solved optimally by its linear programming relaxation (P).

An optimum solution to (IP) can be found in polynomial
time. We will now state some elementary results about totally
unimodular matrices.

Proposition 2. If A is totally unimodular, then so is

(1) its transpose AT ,
(2) the matrix [A | −A] obtained from A by appending the

negated columns of A,
(3) the matrix [A | I] where I is the identity matrix,
(4) any matrix obtained from A through permuting or delet-

ing rows or columns.

In particular, from (3) and (4) it follows that appending a
unit column (0, . . . , 1, . . . , 0)T will not destroy total unimod-
ularity. Further, using these transformations, we can see that
Theorem 1 remains true even if we add to (P) constraints giv-
ing lower and upper bounds to some variables, if we replace
some of the inequality constraints by equality constraints, or
change the direction of an inequality.

0 0 1 1 1 0

1 1 1 0 0 0

0 0 0 0 1 1

0 1 1 1 1 0

0 0 0 1 1 0




A binary matrix A = (aij) ∈ {0, 1}m×n

has the strong consecutive ones property if
the 1-entries of each row form a contigu-
ous block, as in the example on the right.
A binary matrix has the consecutive ones
property if its columns can be permuted so that the resulting
matrix has the strong consecutive ones property. The key
result that will allow us to connect single-peaked preferences
to total unimodularity is as follows:

Proposition 3. Every binary matrix with the consecutive
ones property is totally unimodular.

We remark that by a celebrated result of Seymour (1980),
it is possible to decide in polynomial time whether a given
matrix is totally unimodular, though we do not use this fact.
Single-Peaked Preferences Let A be a finite set of alter-
natives, or candidates, and let m = |A|. A weak order, or
preference relation, is a binary relation < over A that is com-
plete and transitive. We write � and ∼ for the strict and
indifference parts of <. A linear order is a weak order that,
in addition, is antisymmetric, so that x ∼ y only if x = y.
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Every preference relation < induces a partition of A into in-
difference classes A1, . . . , Ar so that A1 � A2 � · · · � Ar
and x ∼ y for all x, y ∈ At. We will say that an alternative
a ∈ At has rank t in the ordering < and write rank(a) = t;
thus the alternatives of rank 1 are the most-preferred alter-
natives under <. Finally, we say that any set of the form
{x ∈ A : rank(x) > t} is a top-inital segment of <.

a b c d e f gC C C C C C

Let C be (the strict part of)
a linear order over A; we call
C an axis. A linear order �i
with most-preferred alternative
p (the peak) is single-peaked
with respect to C if for every
pair of candidates a, b ∈ A with
pC bC a or aC bC p it holds that b �i a. For example, if
the alternatives in A correspond to different proposed levels
of a tax, and the numbers in A are ordered by C in increasing
order, then it is sensible to expect voters’ preferences over A
to be single-peaked with respect to C.

We need an equivalent definition of single-peakedness:

Proposition 4. A linear order � is single-peaked with re-
spect to C if and only if all top-initial segments of � form an
interval of C.

The proof is straightforward, see Figure 1 for an illustration.
An advantage of this alternative definition is that it allows
us to generalise single-peakedness to weak orders. Thus, we
will define a weak order < to be single-peaked with respect
to C exactly if all top-initial segments of < form an interval
of C. This concept is often known as ‘possibly single-peaked’
(Lackner 2014) because it is equivalent to requiring that the
ties in the weak order can be broken in such a way that the
resulting linear order is single-peaked.

A profile P = (<1, . . . ,<n) over a set of alternatives A is
a list of weak orders overA. Each of the orders represents the
preferences of a voter; we write N = [n] for the set of voters.
The profile will be called single-peaked if there exists some
axis C over A so that each order <i in P is single-peaked
with respect to C.

Based on Proposition 4, we can characterise single-
peakedness of a profile in terms of the consecutive ones prop-
erty of a certain matrix. Indeed, a profile is single-peaked
if and only if the following matrix MP

SP has the consecutive
ones property: take one column for each alternative, and one
row for each top-initial segment S of each voter’s preference
relation; the row is just the incidence vector of S. Figure 1
shows an example. Clearly, MP

SP has the consecutive ones
property if and only if the condition of Proposition 4 is sat-
isfied. This construction is due to Bartholdi III and Trick
(1986), see also Fitzsimmons (2015). Note that, because it
is possible to decide whether a matrix has the consecutive
ones property in linear time (Booth and Lueker 1976), this
yields an O(m2n) algorithm for checking whether a given
profile is single-peaked; however, there are faster, more direct
algorithms for this task (Escoffier, Lang, and Öztürk 2008;
Doignon and Falmagne 1994).
Dichotomous Preferences A weak order < is dichoto-
mous if it partitions A into at most two indifference classes
A1 � A2. The alternatives in A1 are said to be approved

v1 v2

b c
c d
a b
d a

7→

0 1 0 0

0 1 1 0

1 1 1 0

1 1 1 1

0 0 1 0

0 0 1 1

0 1 1 1

1 1 1 1





a b c d

{b}
{b, c}
{a, b, c}
{a, b, c, d}
{c}
{c, d}
{b, c, d}
{a, b, c, d}

v1

v2

Figure 1: Translation of single-peakedness of the profile P
into the consecutive ones property of the matrix MP

SP: each
row corresponds to a top-initial segment.

by the voter <. On dichotomous preferences, the notion of
single-peakedness essentially coincides with the consecutive
ones property (Faliszewski et al. 2011): there needs to be an
ordering C of the alternative so that each approval set A1 is
an interval of C. Thus, Elkind and Lackner (2015) use the
name Candidate Interval (CI) for single-peakedness in this
context.

3 Proportional Approval Voting
In this section, we will consider Proportional Approval Voting
(PAV), a multi-winner voting rule defined for dichotomous
(approval) preferences. A naı̈ve way to form a committee
would be to select the k alternatives with highest approval
score, but this method tends to ignore minority candidates,
and so is not representative (Aziz et al. 2017). PAV attempts
to fix this issue: it is based on maximising a sum of voters’
utilities, where a voter i’s utility is a concave function of
the number of candidates in the committee that i approves
of. The rule was first proposed by Thiele (1895). In the
general case, a winning committee under PAV is NP-hard to
compute (Aziz et al. 2015), even if each voter approves only
2 candidates and each candidate is approved by only 3 voters.

Let us define PAV formally. Each voter i submits a set
vi ⊆ C of approved candidates (or, equivalently, a dichoto-
mous weak order with vi �i C \ vi). We aim to find a good
committee W ⊆ C of size |W | = k. The intuition behind
Proportional Approval Voting (PAV) is that voters are hap-
pier with committees that contain more of their approved
candidates, but that there are decreasing marginal returns to
extra approved candidates in the committee. Concretely, each
voter obtains a ‘utility’ of 1 for the first approved candidate
in W , of 1

2 for the second, of 1
3 for the third, and so on. The

objective value of a committee W ⊆ C is thus∑
i∈N

1 +
1

2
+

1

3
+ · · ·+ 1

|W ∩ vi|
.

The choice of harmonic numbers might seem arbitrary, and
one can more generally define a rule α-PAV where α ∈ Rk+
is a non-increasing scoring vector (so αi > αj when i > j).
This rule gives W the objective value

∑
i∈N

∑|W∩vi|
`=1 α`.

Then PAV is just (1, 12 ,
1
3 , . . . ,

1
k )-PAV. However, the choice

3



of harmonic numbers is the only vector α that lets α-PAV
satisfy an axiom called ‘extended justified representation’
(Aziz et al. 2017), making this a natural choice after all.

For single-peaked preferences, Elkind and Lackner (2015)
presented algorithms for finding an optimal PAV committee
running in time O(2snm) and poly(d,m, n, kd), where s
is the maximum cardinality of the approval sets, and d is
the maximum number of voters that approve a given can-
didate. These algorithms, based on dynamic programming,
are efficient if these parameters s or d are small. They also
showed, by extending an algorithm of Betzler, Slinko, and
Uhlmann (2013), that α-PAV is easy for scoring vectors
α = (α1, . . . , αr, 0, 0, . . . ) that are ‘truncated’ in that they
only have a constant number of non-zero values at the begin-
ning. Finally, if one imposes further (restrictive) assumptions
on the structure of the input preferences, they also found
polynomial-time results. However, none of these algorithms
could be extended to cover the general case for solving PAV
and α-PAV for non-truncated scoring vectors. Our method,
being very different from dynamic programming, can solve
PAV in polynomial time if preferences are single-peaked.

Let us now give and analyse our IP formulation for PAV.
This formulation has one binary variable yc for each candi-
date c ∈ C, indicating whether candidate c is part of the
committee. Constraint (2) requires that the committee con-
tains exactly k candidates. The binary variables xi,` indicate
whether voter i ∈ N approves of at least ` candidates in the
committee; this interpretation is implemented by the con-
straints (3).

maximise
∑
i∈N

∑
`∈[k]

α` · xi,` (PAV-IP)

subject to
∑
c∈C

yc = k (2)∑
`∈[k]

xi,` 6
∑

i approves c

yc for i ∈ N (3)

xi,` ∈ {0, 1} for i ∈ N, ` ∈ [k] (4)

yc ∈ {0, 1} for c ∈ C

To help intuition, let us explicitly write down an example
for PAV with harmonic weights, with 4 candidates a, b, c, d,
target committee size k = 2, and two voters, where voter 1
approves {a, b, c}, and voter 2 approves {c, d}. This profile
is single-peaked on the axis aC bC cC d.

maximise (x1,1 +
1
2x1,2) + (x2,1 +

1
2x2,2) (PAV-IP’)

subject to ya + yb + yc + yd = 2 (2)

x1,1 + x1,2 6 ya + yb + yc (3)

x2,1 + x2,2 6 yc + yd (3)

all variables binary

An optimal committee for this profile is, for example,
W = {c, d}. An optimum feasible solution would then set
(x1,1, x1,2, x2,1, x2,2) = (1, 0, 1, 1). We must set x1,2 = 0,
because voter 1 only approves of a single candidate in the

committee. The resulting objective value is 1 + 0 + 1 + 1
2 =

2.5, which is precisely the PAV value of the committee {c, d}.
We now argue formally that our formulation (PAV-ILP)

captures the winner determination problem of α-PAV.

Proposition 5. Program (PAV-IP) correctly computes an
optimal committee according to α-PAV.

Proof. In any feasible solution of (PAV-IP), the variables
yc encode a committee of size k. Fix such a committee
W = {c ∈ C : yc = 1}. We show that the optimum
objective value of a feasible solution with these choices for
the yc-variables is the α-PAV-value of this committee.

Since α > 0, in optimum, as many xi,` will be set to 1 as
constraint (3) allows. Thus, for each i, exactly |W ∩vi|many
variables xi,` will be set to 1. Since w is non-increasing,
wlog, in optimum, these will be variables xi,1, . . . xi,|W∩vi|.
Then the objective value equals the α-PAV-value of W .

The constraint matrix of our example (PAV-ILP’) is

APAV-IP’ =

[ x1,1 x1,2 x2,1 x2,2 ya yb yc yd

0 0 0 0 1 1 1 1
−1 −1 0 0 1 1 1 0
0 0 −1 −1 0 0 1 1

]
Note that, because the input profile is single-peaked, the sub-
matrix corresponding to the yc-variables has the consecutive
ones property: it is just MP

SP with an all-1s row added. Thus,
this submatrix is totally unimodular. The whole constraint
matrix is the obtained by adding negative unit columns cor-
responding to the xi,`-variables. By Proposition 2, adding
these columns yields a matrix that is still totally unimodular.
Generalising this argument to arbitrary profiles, we get the
following.

Proposition 6. The constraint matrix of (PAV-IP) is totally
unimodular when the input preferences are single-peaked.

Proof. We will use the manipulations allowed by Propo-
sition 2 liberally. In particular, it allows us to ignore the
constraints 0 6 xi,`, yc 6 1, and to ignore the difference
between equality and inequality constraints. Thus, after per-
muting columns corresponding to variables xi,` so that they
are sorted by i, the constraint matrix of (PAV-IP) is

APAV-IP =

[ k times︷ ︸︸ ︷
− In . . . −In MP

SP
0n . . . 0n 1m

]
,

where In is the n × n identity matrix, and 1m is an all-1s
row vector with m entries.

If preferences P are single-peaked, then MP
SP has the con-

secutive ones property, and this is also true after appending a
row with all-1s. Thus,

[
MP

SP
1m

]
is totally unimodular. Applying

Proposition 2 repeatedly to append negations of unit columns,
we obtain APAV-IP, which is thus totally unimodular.

Using Theorem 1, that integer programming is easy for
totally unimodular programs, we obtain our desired result.

Theorem 7. α-PAV can be computed in polynomial time for
single-peaked approval preferences.
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An interesting feature of (PAV-IP) is that the integrality
constraints (4) on the variables xi,` can be relaxed to just
0 6 xi,` 6 1; this does not change the objective value of the
optimum solution. This is because in optimum, the quantity∑
` xi,` is integral by (3), and it never pays to have one

of the xi,` to be fractional, because this fractional amount
can be shifted to xi,`′ with `′ < ` to get a (weakly) higher
value.2 This observation might tell us that solving (PAV-IP)
is relatively easy as it is “close” to being an LP, and this
also seems to be true in practice. On the other hand, it is
not necessarily beneficial to relax the integrality constraints
(4) when passing (PAV-IP) to an IP solver: the presence
of integrality constraints might nudge the solver to keep
numerical integrality gaps smaller. Of course, the point of
this paper is to give another reason why (PAV-IP) is “close”
to being an LP, namely when preferences are single-peaked.

4 Chamberlin–Courant’s Rule
Now we leave the domain of dichotomous preferences, and
consider the full generality of profiles of weak orders. The
definition of Chamberlin–Courant’s rule (1983) is based on
the notion of having a representative in the elected com-
mittee: each voter is represented by their favourite candi-
date in the committee, and voters are happier with more
preferred representatives. Let w ∈ Nm be a (non-increasing)
scoring vector; the standard choice for w are Borda scores:
w = (m,m − 1, . . . , 2, 1). Let P = (<1, . . . ,<n) be a
profile. Then the objective value of a committee W ⊆ C
according to Chamberlin–Courant’s rule is∑

i∈N
max{wranki(c) : c ∈W}.

Chamberlin–Courant now returns any committee W ⊆ C
with |W | = k that maximises this objective.

Betzler et al. (2013) gave a dynamic programming algo-
rithm solving this problem if preferences are single-peaked.
We now give an alternative algorithm that has the advantage
of being extensible to OWA-based rules, as we will see in the
next section.

Chamberlin–Courant can be seen as a (non-metric) facility
location problem: each candidate c ∈ C is a potential facility
location, we are allowed to open exactly k facilities, and
the distance between customers and facilities are determined
through w. There is a standard integer programming formu-
lation for this problem using binary variables yc, denoting
whether c will be opened or not, and variables xi,c, denoting
whether facility c will service voter i. However, this formula-
tion is not totally unimodular, since it encodes the preferences
in its objective function rather than in its constraints.

To construct our alternative IP formulation, we need an
another definition of the Chamberlin–Courant objective func-
tion based on maximising a number of points. For expo-
sitional simplicity, let us take w to be Borda scores; other
scoring rules can be obtained by weighting the points. Here
is another way of thinking about the objective value as de-
fined above: each voter i can earn a point for each rank

2A similar property is used by Bredereck et al. (2015, Thm 1).

in i’s preference order: for every rank r ∈ [m], i earns
the point xi,r if there is a committee member c ∈ W with
ranki(c) > r. Then the number of points obtained in total
equals the objective value: if i’s favourite committee member
is in rank r, then i will earn precisely wr = m− r+1 points,
namely the points xi,r, xi,r+1, . . . , xi,m. This view suggests
the following integer programming formulation, where we
put w′r = wr − wr−1 and w′1 = w1.

maximise
∑
i∈N

∑
r∈[m]

w′r · xi,r (CC-IP)

subject to
∑
c∈C

yc = k (2)

xi,r 6
∑

c : rank(c)>r

yc for i ∈ N, r ∈ [m] (3)

xi,r ∈ {0, 1} for i ∈ N, r ∈ [m]

yc ∈ {0, 1} for c ∈ C

Again let us consider an illustrative instantiation of this
program, based on Borda scores, committee size k = 2, and
the profile from Figure 1, with b �1 c �1 a �1 d and
c �2 d �2 b �2 a. The resulting program is as follows.

maximise (x1,1 + x1,2 + x1,3 + x1,4) + (x2,1 + · · ·+ x2,4)

subject to ya + yb + yc + yd = 2 (2)
x1,1 6 yb (3)
x1,2 6 yb + yc (3)
x1,3 6 ya + yb + yc (3)
x1,4 6 ya + yb + yc + yd (3)
x2,1 6 yc (3)
x2,2 6 yc + yd (3)
x2,3 6 yb + yc + yd (3)
x2,4 6 ya + yb + yc + yd (3)

all variables binary

To understand the program, it is convenient to rephrase it in
logical language: we can interpret “6” as “only if”, and “+”
as “or” in constraints (3). For example, the second constraint
of type (3) can be read as x1,2 only if the committee contains
either b or c.

Clearly, for this profile, the committee {b, d} is optimal,
which allows us to set all the xi,`-variables to 1, yielding
objective value 8. If we were to take the committee size
k = 1 (in which case Chamberlin–Courant is the same as
the Borda count), then {c} is the optimum committee. That
committee forces us to set x1,1 = 0, but allows us to set all
the others to 1, yielding objective value 7, which is c’s Borda
score. For general profiles, we can see correctness of the
formulation as follows.

Proposition 8. Program (CC-IP) correctly computes an op-
timal committee according to w-Chamberlin–Courant.

Proof. In any feasible solution of (CC-IP), the variables yc
encode a committee of size k. Fix such a committee W =
{c ∈ C : yc = 1}. We show that the optimum objective value
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of a feasible solution with these choices for the yc-variables
is the objective value of this committee according to w-CC.

Since w′ > 0, in optimum, every xi,r will be set to 1
if constraint (3) allows this. This is the case iff there is a
committee member c ∈ W with ranki(c) > r, i.e., iff the
‘point’ xi,r is earned as described above. Thus, the objectives
of (CC-IP) and Chamberlin–Courant coincide.

Similarly to the case of PAV, the constraint matrix of our
example instance can be obtained by taking the matrix in
Figure 1, appending a row of all-1s for constraint (2), and then
adding negative unit columns. By Proposition 2, the resulting
matrix is totally unimodular, because the matrix MP

SP that
we started out with has the consecutive ones property. More
generally, the proof is as follows.

Proposition 9. The constraint matrix of (CC-IP) is totally
unimodular when the input preferences are single-peaked.

Proof. After similar simplification as in Proposition 6 we see
that the constraint matrix of (CC-IP) is

ACC-IP =

[
−Inm MP

SP
0 1m

]
.

Again, if preferences P are single-peaked, then MP
SP has the

consecutive ones property, and this is also true after append-
ing a row with all-1s. Thus,

[
MP

SP
1m

]
is totally unimodular.

Applying Proposition 2 repeatedly to append unit columns,
we obtain ACC-IP, which is thus totally unimodular.

Theorem 10. Chamberlin–Courant with score vector w can
be solved in polynomial time for single-peaked preferences.

5 OWA-based Rules
In the philosophy behind Chamberlin–Courant, each voter
is represented by exactly one committee member, and ob-
tains all ‘utility’ through this representation. In many appli-
cation scenarios, we may instead seek multirepresentation
(Skowron, Faliszewski, and Lang 2015): for example, you
might watch several of the movies offered by an inflight-
entertainment system, and thus should be represented by
several committee members. In such scenarios, Chamberlin–
Courant might design a suboptimal committee; Skowron et
al. (2015) introduce OWA-based multi-winner rules as a more
flexible alternative (see also Faliszewski et al. 2016b).

Another way of motivating OWA-based rules, as defined
below, is by examining the contrast between the k-Borda
rule and Chamberlin–Courant, a line of thought explored by
Faliszewski et al. (2017a). The k-Borda rule returns the com-
mittee formed of the k-candidates whose Borda scores are
highest. This rule is suitable if we aim to identify a collection
of ‘excellent candidates’, such as when shortlisting candi-
dates for job interviews, or when finding finalists of various
competitions, based on evaluations provided by judges. On
the other hand, Chamberlin–Courants identifies committees
that are diverse, in that they represent as many of the voters
as possible. In many real-life applications, we desire a com-
promise between these two extremes; for example, we might
want our shortlist of excellent candidates to also be somewhat

diverse. Faliszewski et al. (2017a) propose the t-Borda rules,
t = 1, . . . , k, as a family of rules that interpolate between
k-Borda and Chamberlin–Courant. Under the t-Borda rule, a
voter i’s utility is measured by the sum of the Borda scores
of i’s top t most-preferred members of the committee. Thus,
Chamberlin–Courant is identical to 1-Borda, and k-Borda is
identical to, well, k-Borda.

Let us now formally define OWA-based rules. Given a
vector x ∈ Rk, a weight vector α ∈ Rk defines an or-
dered weighted average (OWA) operator as follows: first,
sort the entries of x into non-increasing order, so that
xσ(1) > . . . > xσ(k); second, apply the weights: the or-
dered weighted average of x with weights α is given by
α(x) :=

∑k
i=1 αixσ(i). For example, α = (1, 0, . . . , 0)

gives the maximum, and α = (1, 1, . . . , 1) gives the sum of
the numbers in x.

Now, a scoring vector w ∈ Nm and an OWA α define
an OWA-based multi-winner rule as follows: Given a pro-
file P , the rule outputs a committee W = {c1, . . . , ck} that
maximises the objective value∑

i∈N
α(wc1 , . . . , wck).

Thus, choosing α = (1, 0, . . . , 0) gives us w-Chamberlin–
Courant as a special case. Choosing α = (1, 1, 0, . . . , 0)
gives us 2-Borda, the analogue of Chamberlin–Courant where
voters are represented by their favourite two members of the
committee. The OWA-based rules with α = (1, 12 , . . . ,

1
k )

and w = (1, 0, . . . , 0) gives us PAV, when given dichoto-
mous preferences as input. Thus, OWA-based rules gener-
alise both Chamberlin–Courant and PAV, and it turns out that
we can apply our method to these rules by merging the ideas
of (PAV-IP) and (CC-IP). However, our formulation is only
valid for non-increasing OWA vectors with αi > αj when-
ever i > j. For example, this excludes the rule where voters
are represented by their least-favourite committee member.3

In the IP, we use variables xi,`,r indicating whether voter
i ∈ N ranks at least ` candidates in the committee in rank r
or higher. We again put w′r = wr − wr−1 and w′1 = w1.

maximise
∑
i∈N

∑
`∈[k]

∑
r∈[m]

α` · w′r · xi,`,r (OWA-IP)

subject to
∑
c∈C

yc = k (2)∑
`∈[k]

xi,`,r 6
∑

c : rank(c)>r

yc for i ∈ N, r ∈ [m] (3)

xi,`,r ∈ {0, 1} for i ∈ N, `, r (4)

yc ∈ {0, 1} for c ∈ C

3Still, this case is also efficiently solvable in the single-peaked
case: note that a voter’s least-favourite committee members will
be either the left-most or the right-most member of the committee;
thus it suffices to consider committees of size 2. This idea can be
extended to OWA operators α = (0, . . . , 0, αk−c, . . . , αk) that are
zero except for constantly many values at the end.
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Proposition 11. If α and w are non-increasing, (OWA-IP)
correctly computes an optimal committee according to the
OWA-based rule based on α and w.

Proof sketch. Similarly to previous arguments, in optimum,
we will have xi,`,r = 1 if and only if the committee W =
{c ∈ C : yc = 1} contains at least ` candidates that voter
i ranks in rank r or above. Thus, the objective value of
(OWA-IP) agrees with the defined objective of the OWA-
based rule.

The following property is proved very similarly to before:
the constraint matrix is obtained fromMP

SP by appending unit
columns.
Proposition 12. The constraint matrix of (OWA-IP) is to-
tally unimodular when input preferences are single-peaked.

Theorem 13. OWA-based rules with non-increasing OWA
operator can be solved in polynomial time for single-peaked
preferences.

6 Some Extensions
More than Single-Peakedness. Our polynomial-time re-
sults apply to a slightly larger class than just single-peaked
profiles: they also apply when MP

SP (with an all-1s row ap-
pended) is totally unimodular but does not necessarily have
the consecutive ones property. It can be shown that this is the
case whenever P contains only two distinct voters, or, more
generally, when the set of all top-initial segments of P can
also be induced by a two-voter profile. Together with single-
peaked profiles, we conjecture that these classes of profiles
are precisely the profiles for which the relevant constraint
matrices are totally unimodular.
Egalitarian versions. We can obtain egalitarian versions of
the multi-winner rules that we have discussed by replacing
the sum over N by a minimum in their objective values (Bet-
zler, Slinko, and Uhlmann 2013). For PAV and Chamberlin–
Courant, our IP formulations can easily be adapted to answer
the question “is there a committee with egalitarian objective
value > L?” while preserving total unimodularity in the
case of single-peaked preferences. An optimum committee
can then be found by a binary search on L. However, it is
unclear how this can be achieved for OWA-based rules. It is
also unclear how to handle other utility aggregation operators
such as leximin (see Elkind and Ismaili 2015).
PAV and Voter Intervals. Elkind and Lackner (2015) define
an analogue of single-crossingness for dichotomous prefer-
ences called voter interval (VI), which requires the transpose
of MP

SP to have the consecutive ones property. As for CI, they
conjectured that PAV remains hard on VI preferences. We
could not solve this problem using our method: the constraint∑
c∈C yc = k of (PAV-IP) destroys total unimodularity.

Dodgson’s rule. An alternative is a Dodgson winner if it can
be made a Condorcet winner using a minimum number of
swaps of adjacent alternatives. This number of swaps is the
Dodgson score of an alternative. Bartholdi III, Tovey, and
Trick (1989) give an IP formulation for this problem, which
is also used in the treatment of Caragiannis et al. (2009).
Sadly, while ‘most’ of the constraint matrix is again identical

to MP
SP, some extra constraints (saying that the swaps in each

vote should only count once) destroy total unimodularity, so
our method cannot be employed for this formulation. Note
that while Brandt et al. (2015) give an efficient algorithm for
finding a Dodgson winner in the case of single-peaked pref-
erences, the problem of efficiently calculating scores appears
to be open and non-trivial. Maybe there is an alternative IP
formulation that can be made to work using our approach.
Kemeny’s rule. Conitzer, Davenport, and Kalagnanam
(2006) present several IP formulations for Kemeny’s rule.
The poly-size formulation they give involves constraints en-
forcing transitivity of the Kemeny ranking; these constraints
are not totally unimodular. In any case, most strategies for
calculating Kemeny’s rule first calculate all pairwise majority
margins; we might as well check for transitivity at this stage
– trying to use fancy total unimodularity is unnecessary.

7 Conclusions
We presented a new algorithmic technique that can evalu-
ate some popular multi-winner voting rules in polynomial
time when preferences are single-peaked. Interestingly, this
approach works even if we have not checked in advance
whether single-peakedness applies. In future work, it will be
interesting to see how these formulations perform in practice,
and to see whether other problems admit formulations of this
type.
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