Hedonic Games with Dichotomous Preferences

Dominik Peters

Department of Computer Science, University of Oxford, UK

- A coalition is an alliance between a group of individuals, formed in order to achieve a common goal.
- Question: How do such coalitions form if agents are selfish?
- Hedonic Games are a widely studied model for coalition formation
- Agents only care about the members of their own coalition (see **box**)
- Previous work on hedonic games is mostly negative: often, stable out-

comes don't exist, and finding them is computationally very hard. Can we do better using dichotomous preferences?

Guaranteed √

• Every dichotomous hedonic game

admits a simultaneously core-stable

and individually stable outcome.

• Outcome is resistant to deviations by

• Can be found efficiently in many cases.

• An individually stable outcome can al-

• Algorithm: Repeatedly find and assign a coali-

tion that is approved by all its members, until

no such coalition exists anymore. Then assign

the remaining players into one 'loser coalition'.

Boolean Hedonic Games

• Example: I approve coalitions satisfying:

Alice $\land \neg Bob \land (Charlie \rightarrow (Dave \lor Eve))$

cepts using logical formulas that can be

• Concise representation using logic.

 \bullet Proposed by Aziz et al. (2014/16).

fed into a SAT solver

are optimal.

• Aziz et. al. characterise solution con-

pleteness and Σ_2 -completeness) that

show that these logic-characterisations

Few Approved Coalitions

• To chart out the islands of tractability,

we consider the case where agents ap-

• In some contexts, this may also be sen-

• A k-list consists of at most k approved

prove only very few coalitions.

sible to assume in practice.

both groups and single players.

ways be found efficiently.

Stable Outcomes

fare, and Pareto-optimal outcomes Hedonic Games: Definitions

Finite set N of agents, each agent $i \in N$ having dichotomous preferences \geq_i over all $groups S \subseteq N$.

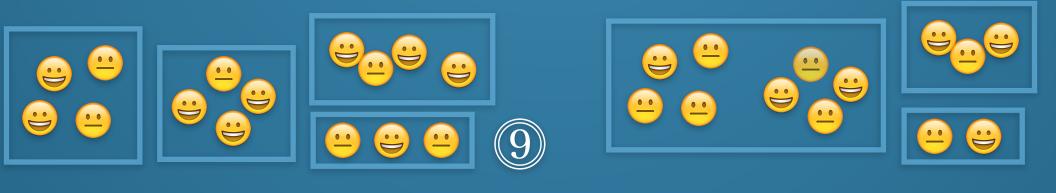
coalitions are split into two 'preference levels' (= indifference classes): approved coalitions and non-approved coalitions

 $\{1,2\} \sim_1 \{1,2,3\} >_1 \{1\} \sim_1 \{1,3\}$ approved coalitions

Outcome: a partition π of agent set N.

 π is perfect (PF) if everyone is in an approved coalition

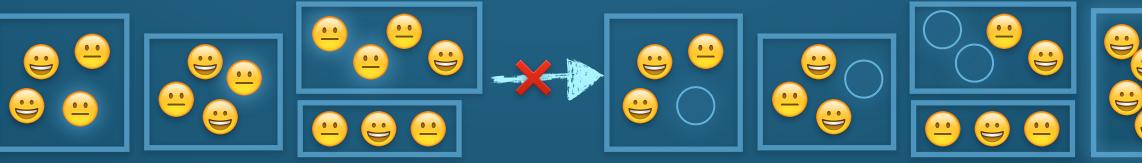
 π is Pareto optimal (PO) if no π ' is strictly better for someone and weakly better for everyone



 π has social welfare (SW) k^* if k^* agents are in approved coalitions

 π is Nash stable (NS) if no-one wishes to join another coalition in π

 π is individually stable (IS) if no-one wishes to join another coalition in π all of whose members welcome the deviator



 π is core-stable (CR) if no coalition S of players all strictly prefer S to π

• We provide complexity results (NP-com-

 π is strict-core-stable (SCR) if no coalition S of players all weakly prefer S to π , with at least one member of S having a strict preference

Roommates

Intervals

• They only approve coalitions that form an interval

• Dynamic Programming can produce partitions maximising social wel-

• Structural restriction: Suppose agents are ordered on a line

• Dichotomous "single-peakedness" for hedonic games

- Stable Roommates problem: Only allow coalition sizes 1 and 2
- Results from literature imply: most problems (e.g., welfare-maximisation, core-existence, Pareto-optimality) become easy when preferences are dichotomous
- However, finding a Nash stable outcome remains NP-complete

Majority Games

- Preference restriction inspired from social choice / voting.
- Suppose agents sit on the vertices of a graph: they form a social network
- Agents want to be influential in their coalition: approve those coalitions in which they are adjacent to majority of players
- Intuition: Players are happy when their opinion would prevail in majority elections within their coalition.
- Analysed using Hajnal-Szemerédi thm from extremal graph theory and graph packing algorithms (Hell & Kirkpatrick).
- Guaranteed to have a simultaneously Nash-stable and core-stable outcome which can be found efficiently.
- Can also efficiently find a perfect or strict-core-stable outcome if one exists.

Conclusions

- Dichotomous preferences can avoid the complexity trap in hedonic games, at least when requiring additional structure
- Future work: Find other promising structural restrictions, perhaps using a graphical approach. Evaluate Boolean Hedonic Games using state-of-the-art SAT solvers.

coalitions. • We show that welfare-maximisation and finding strict-core-stable partitions is hard even for 1-lists. The former is also inapproximable.

- For 2-lists, 2SAT can find Nash-stable or Pareto-optimal partitions.
- For 3-lists and 4-lists, most problems are already hard.

Anonymous Games

- Here, agents' preferences depend only on coalitions sizes, i.e., the cardinality |S| of their coalition.
- Known to induce hard problems in general case (Ballester 2004).
- We show: NP-hard even for dichotomous anonymous preferences!
- Related to "group activity selection problem" (Darmann et al. 2012).

	SW	PF	РО	NS	IS	CR	SCR
Boolean	NP-c.	NP-c.	NP-h.	NP-c.	Р	FNP-h.	Σ_2^p -c.
1-lists	NP-c.	P	Р	P	Р	P	NP-c.
2-lists	NP-c.	P	P	P	P	P	NP-c.
3-lists	NP-c.	NP-c.	NP-h.	?	P	P	NP-c.
4-lists	NP-c.	NP-c.	NP-h.	NP-c.	P	P	NP-c.
Anonymous	NP-c.	NP-c.	NP-h.	NP-c.	P	P	NP-c.
Intervals	P	P	P	?	P	P	?
Roommates	P	P	P	NP-c.	P	P	P
Majority	?	P	?	P	Р	P	P