Party Approval PAV Converges to Nash

Dominik Peters

March 2025

Let N be a set of n voters and C a set of m candidates (or parties). An approval profile is a collection $A = (A_1, \ldots, A_n)$ of non-empty subsets $A_i \subseteq C$ of approved parties for each voter $i \in N$.

Given a number of seats k, a seat allocation is a vector $x = (x_1, \ldots, x_m)$ with $x_i \in \mathbb{N}$ for each party $i \in C$ such that $\sum_{i=1}^{m} x_i = k$. Given an approval profile A, and a number of seats k, the *PAV score* of a seat allocation x is defined as

$$PAV(A, x) = \sum_{i \in N} H(\sum_{j \in A_i} x_j),$$

where $H(t) = \sum_{j=1}^{t} \frac{1}{j}$ is the harmonic number. The *PAV rule* selects a seat allocation x that maximizes the PAV score. Note that we are operating in the "party-approval" setting where each party can receive an arbitrary number of seats.

Let $\Delta(C) = \{p \in [0,1]^m \mid \sum_{i=1}^m p_i = 1\}$ be the simplex of probability distributions over C. The Nash rule selects a distribution $p \in \Delta(C)$ that maximizes the log Nash product

$$\operatorname{Nash}(A, p) = \sum_{i \in N} \log(\sum_{j \in A_i} p_j).$$

Note the following standard inequality connecting the harmonic and log functions:

$$\ln(t) + \gamma \le H(t) \le \ln(t) + \gamma + \frac{1}{2t},\tag{1}$$

where γ is the Euler-Mascheroni constant.

We can now show that the PAV rule converges to the Nash rule as $k \to \infty$.

Theorem 1. Let A be an approval profile. For each $k \in \mathbb{N}$, let x^k be the PAV allocation for A with k seats. Let $p^k = \frac{x^k}{k}$ be the distribution over C induced by x^k . Since $\Delta(C)$ is compact, the sequence p^k has a limit point $p^{\infty} \in \Delta(C)$. Let p^* be the Nash distribution for A. Then $Nash(A, p^{\infty}) = Nash(A, p^*)$.

Proof. Suppose for a contradiction that $\operatorname{Nash}(A, p^{\infty}) < \operatorname{Nash}(A, p^*)$. Then there exists a rational distribution q and some $\varepsilon > 0$ such that $\operatorname{Nash}(A, q) > \operatorname{Nash}(A, p^{\infty}) + \varepsilon$.

Because the Nash objective is continuous and $p^k \to p^{\infty}$, we have $\operatorname{Nash}(A, p^k) \to \operatorname{Nash}(A, p^{\infty})$. Thus, for sufficiently large k, we have

$$Nash(A, p^k) < Nash(A, q) - \varepsilon/2.$$
⁽²⁾

Now, choose some k^* large enough such that

• (2) holds,

- $k^* > n^2/\varepsilon$,
- k^* is a multiple of n, and
- k^* is a multiple of the denominators of the rational numbers $(q_j)_{j \in C}$.

From the last property, there exists a seat allocation y such that $q_j = y_j/k^*$ for all $j \in C$. We will show that y has a higher PAV score than $x := x^{k^*}$, a contradiction.

For each $i \in N$, write $u_i = (\sum_{j \in A_i} x_j)/k^*$ for their utility under x as a fraction of seats, and $u'_i = (\sum_{j \in A_i} y_j)/k^* = \sum_{j \in A_i} q_j$ for their utility under y and q. Recall that PAV satisfies EJR. Let $i \in N$ be a voter. Note that $S = \{i\}$ forms a group of size

Recall that PAV satisfies EJR. Let $i \in N$ be a voter. Note that $S = \{i\}$ forms a group of size $|S| \geq \ell \cdot \frac{n}{k^*}$ with $\ell = \lfloor \frac{k^*}{n} \rfloor$, and S is obviously cohesive as approving at least one common party. Thus, EJR guarantees that

$$k^* u_i \ge \left\lfloor \frac{k^*}{n} \right\rfloor = \frac{k^*}{n},\tag{3}$$

where k^*u_i is the number of seats in x going to approved candidates, and where we can remove the floor because k^* is a multiple of n.

Now we have

$$PAV(A, x) = \sum_{i \in N} H(k^* u_i),$$

$$\leq \sum_{i \in N} \ln(k^* u_i) + \gamma + \frac{1}{2k^* u_i}$$
(by (1))

$$\leq \sum_{i \in N} \ln(k^* u_i) + \gamma + \frac{n}{2k^*} \tag{by (3)}$$

$$<\sum_{i\in N} \ln(k^*u_i) + \gamma + \frac{\varepsilon}{2n}$$
 (since $k^* > n^2/\varepsilon$)

$$= \operatorname{Nash}(A, p^{k}) + \sum_{i \in N} \ln(k) + \gamma + \frac{\varepsilon}{2n}$$

$$< \operatorname{Nash}(A, q) - \frac{\varepsilon}{2} + \sum_{i \in N} \ln(k^{*}) + \gamma + \frac{\varepsilon}{2n} \qquad (\text{from (2)})$$

$$< \operatorname{Nash}(A, q) - \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \sum_{i \in N} \ln(k^{*}) + \gamma$$

$$= \sum \ln(k^{*}u'_{i}) + \gamma$$

$$\leq \sum_{i \in N} H(k^* u'_i)$$

$$= PAV(A, y),$$
(by (1))

which is the desired contradiction.

=