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PURPOSE AND SCOPE

The appropriate subdifferential of a convex function has been

proved to be a useful tool in convex analysis, from the

theoretical viewpoint as well as for practical purposes.

+

Give

a convex function f defined on X, the approximate subdifferenti

a f(.) which assigns to (x,ε) Xx the so-called E-

subdifferential of f at x turns out to have remarkable properti

The properties of the subdifferential set-valued mapping

x af (x) (i.e. for = 0) as well as calculus rules on

to survey the main chain rules on -subdifferentials.

subdifferentials are widely known in convex analysis [3, 8, 12,

22, 28, 33, 40]. As for the e-subdifferential af, whose

definition is just a "perturbation by " of that of af, it

enjoys, for > O, some noteworthy properties different as for

their nature from those of the "exact" subdifferential.

Moreover, exact rules on e-subdifferentials, generalizing those

established for = 0, do not seem to be well-known. Our aim

in this paper is two-fold firstly to get a better insight int

the local behaviour of a f(x) around a given x X, secondly,
E

E

One of the reasons why the properties of af and ef may be

different is that of is a local notion while af is a global one

To be more explicit, the -subdifferential of f at x is define

as the set of x* X satisfyingE

f(x) f(x) + <x

for all x. a f(x) may be very sensitive to the variations of

f, even when those variations do not hold in a neighborhood of

%* From the geometrical viewpoint, a f(x) is closely related

to the closed (convex) cone with apex (x, f(x) - ε) generated
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by the epigraph of f (epif). When >0, this cone is known to

be composed of two convex cones: the cone with apex

(x, f(x)) generated by epif and the asymptotic cone (or

recession cone) of epif [9]. The latter cone takes into account

the behaviour of f when x is "far" from xo The necessity, a

priori, of knowing the behaviour of f on all of X for the

calculation of a f(x) is corroborated by the fundamental

approximation result due to Brøndsted and Rockafellar [7].

Roughly speaking, the result states that the more precisely you

desire to know a f(x), the farther from xo you need to know

af (x). However, this disadvantage is weighted against the good

effects wrought by the perturbation by ε. For example, the

use of the E-directional derivative fr (✗o;.) (i.e. the support

function of a f(x)) as a substitute for the usual directional

derivative has been proved advantageous in many algorithms of

convex optimization; see [2,29,301 and references therein. As

for the continuity property of a f(.) as a set-valued mapping of

both x and, the main result goes back to the comprehensive

study by Asplund and Rockafellar [o]. In particular, they

proved that for a lower-semicontinuous convex function defined

on a Banach space, the approximate subdifferential

a f(.)(x,) a f(x) was continuous in the Hausdorff
€

sense on int (domf) x More recently, Nurminskii [35] showed

the locally Lipschitzian behaviour of the -subdifferential of a

finite convex function defined on ; this result was improved

and generalized in various ways in the author's companion paper

[19]. Section I and VII of the present study are along the

lines of the above described local properties of the approximate

subdifferential.

Like for the subdifferentials, calculus rules on -

subdifferentials are of importance; in many situations it is of

interest to have expressions of e-subdifferentials of a convex

function g which has been constructed from other convex functions

whose properties are better known. For example, g might be a

sum or supremum of convex functions f Various formulas.

yielding some elements of a g(x) in terms of the afi (x) haveni
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€

been established in the literature. However, very little seen

to be known concerning the exact expression of a g(x) in term

of the a f(x), except maybe when g is a sum of functions

(g = f₁+f2) or results from the composition of f with a linear

mapping A(g = foA). In this paper we drew up a panorama of

the main calculus rules on E-subdifferentials and we join to

them various conditions sufficient for this or that formula to b

valid. The reader will have noted that all the chain rules

presented here generalize what is known for subdifferentials

and the sufficient conditions for their applicability are

exactly the same as for ε = 0. Concerning these calculus rules,

one should mention that general results dealing with convex

operators (1.e. convex vector-valued functions) have been

announced recently in a note by Kutateladze [27]. To a certain

extent, Kutateladze's formulas cover the greatest part of chain

rules displayed here. Nevertheless, we seize the opportunity

of treating real-valued functions to present conditions of

applicability peculiar to that context and to provide the proofs

of formulas.

We assume that the reader is familiar with basic definitions

and properties from convex analysis.
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1. PRELIMINARY DEFINITIONS AND PROPERTIES

As it is customary in the context of convex analysis, we work in

the setting of two locally convex (real) topological vector

spaces X and X*paired in duality by a bilinear form

(x,x*) + <x,x*> (see, e.g., [33,§6], [28, 36.3] or [41, §3]).

The most usual example of paired spaces is obtained by

considering as x a locally convex Hausdorff topological vector

space, as x* the topological dual space of X, and

<x,x*> = x*(x) as the pairing on x x x*.

Throughout we shall deal with proper convex functions (a

function f is said to be proper if f is not identically equal

to + and if f(x) > for all x), and we shall denote by

ro (X) the set of proper convex functions which are lower-

semicontinuous (l.s.c.).

Given a proper function f, the e-subdifferential of f at

domf (dom f is the set where f is finite) is defined for

each > 0 as the set of vectors x" X satisfying
*

f(x) f(x) + <x",x-x E

for all x < X.

(1.1)

when = 0.

whenever (x

€

€
The set of such vectors, denoted by a f(x), is closed

convex set in X* which reduces to the subdifferential af (x)

Moreover, if fe гo (X), a f(x) is nonempty

dom f and) > 0. Geometrically (1.1) says that

the epigraph of the affine function passing through (x, f(x)-ε)

and of slope x' contains the epigraph of f. This definition,

as it is, shows that the behaviour of f on the whole space X

may be relevant to the construction of a f(x) for ε > 0.

There are two fundamental ways of characterizing

through the conjugate function f* and with its support function.

Since they both will be used in the sequel, we recall these

E

f(x) :
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characterizations as well as some easy consequences which can

derived from them.

Proposition 1.1

Ε

f(x) if and only if :x €

f(x) + f* (x*) - <*> . □ (1.2)

When fe (X), f and f* ( гo (x*)) play a symmetric role; the

(1.2) is equivalent to: xa f* (x*). As the above formula

illustrates, the knowledge of f*

E

suffices for the

calculation of a f(x). Actually, all the chain rules
Ε

concerning the e-differentials which will be displayed later

hinge on formula (1.2).

Example 1.1. Let f

f(x) = f(x) for all x

the indicator function of

о

(X) be positively homogeneous (i.e.)

X and X > 0). For such an f, f* is

Hence, for all x, € dom f,af (O).

f(x) = (xaf (0) <*>(x) - <).

In particular, let X = E be a normal vector space and X = E'

its topological dual space endowed, for example, with the

o (E,E) topology; let designate the normal function on E and

the dual norm on E'. Then

Ε о
(x)=(x*(**) ≤ 1, <****>(x) - ε }.

Example 1.2. Let C be a nonempty closed convex set in X.

The set N (C;x) of e-normals to C at x C is defined as the

E-subdifferential of the indicator function (. C) at x, i.e.

x-x> <for all x = C}.-x

In a dual formulation, x' C

E
N (C;x) if and only if
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8* (x* |C) - <*>

As a general rule, NE (C;✗_) is no more a cone so that duality

results on cones cannot be invoked when dealing with it.

Incidentially, note that the notion of e-normality is unhelpful

for defining a concept of "approximate tangent cone" to C at x

What can only be said in general is that N (C;✗_) is a closed

convex set contained in the barrier cone of C, and whose

recession cone is N (C;x).

Ε

Example 1.3. Let f :
n

(-,+] be a polyhedral convex

function [40, Section 191. For such a function, the level sets

are polyhedral convex sets and the conjugate function is

polynedral. Consequently, for all x εdom f, a f(x) is a

polyhedral convex set.

ε

The characterization of f (xo) in terms of its support function is

given by the following result [40, pp. 219-220], [33, p. 6711.

Proposition 1.2. Let fero (X); then the support function of

f(x) is given by

df (xoid) = inf

f(x+hd) f(x) + €

λο

□ (1.3)

Observe that, as it is, the formula giving f (xo;d) again

emphasizes that, for > O, the infimum of the approximate

differential quotient [f(x+\) f(x) + (or an infimum

within a > 0) may be achieved "very far" from the concerned

The example of x|x| at x = O is illustrativepoint **
of that.

Example 1.4.

λ

Let f be a quadratic function defined on pn as

f(x) = <Ax, x> + <b,x> + c,

where A is a symmetric positive-definite nxn matrix, b a vector

in and c a real number. This is an example where the -

directional derivative f (xo;d) is easy to calculate. Given

49
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x and a d direction, the definition (1.3) yields for the

particular f involved

f(xo;d) <Ax,d> + <b,d> + (2 <Ad,d>).

The function d (2ɛ <Ad,d>)! is known to be the support

function of the set (x*|<x*,A¹x*> <2) (see [40, p.119]).

Hence we have that

€
a f(x) = Ax+b+ (x*<x*,A¯ <2ɛ }

= Vf(x) + (Ay<Ay*,y*> 2ɛ).

We note in this example that even if f'(xo;d) = lim

€ +0

+

the difference f(xo;d) - f'(xo;d) may decrease slowly, as

slowly as

оFor fixed >0 x < dom f (f гo (X)) and d 0, the

behaviour of the function

°

(x+id) f(x) + c-

λ

on is of particular importance in the way of approximating

f'(xo;d). Of course, d is chosen among those which are of

interest i.e. those for which there exists €10,+] such ta

+Ado<} < dom f. The behaviour of
{x。

'

+ is known since

If
0+near and

lim q() = +00 '

1+0+

(*) of course, there are various ways of obtaining this formula;

see for example [30, p. 381.

+ f (xid

(*)

=
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f(x+id) - f(x)

= f(d).
lim qf(A) = sup

1>0

1++00

Here, f is what is known as the recession function of f (or the

asymptotic function of f). The function fa → f(x+λd)

occurring in the numerator of q₁ is a function of гo (#) which is

finite at least on [0,[. Obviously q is a lower- semi-

continuous quasi-convex function on *. Even more, q enjoys a

pseudo-convexity property in the sense that the stationary points

of q₁ in * are also the global minima of q₁ on *. Let us make

this more precise.

Proposition 1.3. A € R is a global minimum of q on Rif
о

and only if

9₤ (10) af (1)

Proof. Immediate from the definitions.

Under mild assumptions on f, we have that

=

afa (1) <f(x+1), > '

so that (1.4) is rewritten as

94 (10) €() cat (x+1), >.

☐ (1.4)€

(1.5)

Such a function is locally

This relation deserves some more explanation. For the sake of

simplicity, let X = E be a Banach space and fER be a

continuous convex function.

Lipschitz on E and q is now locally Lipschitz from * into R.

A necessary condition for 10 (* to be a minimum of qf
is that

on *

(1.6)
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where aq stands for Pshenichnyi's quasi-differential

[38, Ch. IIIlor, equivalently here, Clarke's generalized

gradient of [10]. It is now just a matter of applying

existing chain rules [4], [17, 18] to obtain that

(1) (+) (1).

Plugging this expression in the condition (1.6) just yields

(1.5).

The reason why the necessary condition for optimality (1.6)

is also sufficient can be explained by the following:

Proposition 1.4. The function r₁ defined on by

=rf (u) (금)

is convex.

While dealing with finite coercive functions, Lemaréchal and

Nurminskii [31] noticed the above property as a by-product of a

duality result. However, the result can be derived in the

general case from noticing that the function f(x+) is

convex on *. The latter merely comes from the following:

given an interval I c (u) is convex on I if and only if

() is convex on I.

Obviously, F) is a minimum of q₁ on + if and only if
°

Ho 1/ is a minimum of r₁ on .
*

Now the necessary and

sufficient condition for optimality of o > 0, 0 (0),

is made equivalent to (1.6) by a chain rule (on generalized

gradients of arbitrary functions) which states that

a retuo

2

-

= 1).

The next example illustrates the foregoing.

Example 1.5. Let f : R-→ (-,+] be defined by

=
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f(x) =

x if 0 ≤ x ≤ 1,

2x-1 if x > 1,

+00 if x < 0.

=0,d=+1 and E ThenLet xo = 1/2.

2-1/21 if
¶ (x) = {

1+1/2X if 0 < 1,

1,

and the only E af (1) is = 1.
for which 9f (10)

It might be more advantageous to work with r₁ rather than qf

From the computational viewpoint, it is fairly easier to

minimize the convex function гf on especially as+

lim
If (u)

= +∞

00++11

rlim()
f

= f (d) > -∞
∞

O+rl

case where q₁ does not achieve the infimum value f (xo;d) on

corresponds to the situation where q₁ (1) > f (d) for all
*

One then can be led to the

> 0; in terms of the function r, that means that o = 0 is

the unique minimum of rf on +

consideration of those A > O satisfying
α

((xid) + a
α

(a > O). (1.7)

f is a convex Lipschitz function on a Banach space (with

Lipschitz constant r > 0), one easily checks that all the A

satisfying (1.7) belong to the interval

[
Ε

'

+00

α

2r|a|a

noticed above, a necessary and sufficient condition for to

its minimum on ** is to suppose that there exists

> O for which q₁ (^*) ≤ f(d). That is certainly true for

d directions satisfying f (d) = + 0.
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foo (d)-

f'(xoid).

f(d)

Ho

The functions in Example 1.5
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2. THE E-SUBDIFFERENTIALS OF f₁ ₤2 AND f A.

2.1. Let f₁ and f₂ be two proper convex functions on X. As

indicated in the previous paragraph, the description of the E-

subdifferentials of f₁+f2 can be derived from the expression of

(f₁+f2)* in terms of f✓ and f2. The basic assumption for that

is the following:

(H+) (₁₂)(x) in(f(xxx+min(f(x) = *x*.=

2Theorem 2.1. Let f₁ and f₂ be two proper convex functions for

which (H) holds. Then.

ε
(+2) (0)

=

€10, 20

€1+ 2
+E = €

{a (x) +2(x)) (2.1)
2

for all x dom f₁n dom f2.

Proof. As for the proofs of all chain rules in the sequel,

use the characterization given in Proposition 1.1.

There are various assumptions guaranteeing (H+) which are

displayed in the literature devoted to convex analysis.

list some of them, beginning with the finite-dimensional case

Let us

(H ri dom f₁ri dom f2 0, where "ri" stands for the

x = Rn.

relative interior; the ri requirement may be deleted for

either index i for which fi may happen to be polyhedral;

(H2) Oint A where

((x1)×1 € dom f1
dom f2};Δ

×2×1
€=

+

-
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(H) for some x and some real a the set

((xxx dom f₁,E x =

is nonempty and bounded;

(H) for all x* the condition (f) ( ) (✗*) + (£)(-x*) ≤0

implies [f11 (-x*) + [f] (x*) ≤ 0;

(H) f₁ is polyhedral and whenever ✗* satisfies (f)()()(x

[f(x) 0 for (f) (-x*) + [f(x*) > O it follows that

[f(x) = f (x*);

(H) f1 and 2 are polynedral and (f) (x*) + (f) (-x")

for all x*.

In the infinite-dimensional setting, we have the following:

(H) there exists x € dom f₁ at which f₂ is finite and

continuous;

(H) X is a Banach space (in the designated topology

compatible with the pairing), f₁ and f₂ are in ro (X), and 0 li

in the algebraic interior of A for A as in (H);

(H+) f₁ and f₂
X the set

are in ro (X), and for some open set in

dom fx+x, f(x) + f (x2) <a}

is nonempty and equicontinuous;

(HO X is a Fréchet space, ✗* its dual space, f₁ and f₂

are in (X). For any continuous semi-norm p on X there exis

a continuous semi-norm q on X such that

p + (f) (f+q*).

[or p (f₁+f2) ≤ f₁ + (f₂ V q)].
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The sufficiency of conditions (HD) (D) through (H) are proved in

Rockafellar's book [40]; conditions (H) - (H)/(2) stated using the

recession functions can be seen to be the dualized versions of

the conditions contained in (H), as shown by McLinden [32,

p. 165]. In the infinite-dimensional context, the sufficiency

of conditions (H7) through (H) is Theorem 20 of Rockafellar's

monograph [41] where the reader will find the appropriate

references. Note that (H) is the most widely used condition

for securing a property like (H).

Conditions like (H) and (H) are appealing because firstly

they are symmetric in f₁, f2 and secondly they do not require

the interior of dom f₁ (or dom f₂) to be nonempty. (H) is a
requirement akin to the following

Oint (dom fl
- dom f.£ 2). (2.2)

which can be found in some textbooks on convex analysis, while

(H) reduces to (compare with (2.2)) :

0 € dom f₁
-

int (dom f2). (2.3)

Conditions like (2.2) are considered in the recent literature

for stability questions and regularity conditions in

mathematical programming problems. In particular, when f₁ and

f2 are positively homogeneous, refinements of condition (2.2)

are stated by imposing that dom f₁ - dom f2 is a subspace of x;

they then are "in general position" (Kutateladze's terminology

[26]) or "transversal" (Penot's terminology [37]).

Conditions (H0) is due to Joly [24] and has a particular

flavour when f₁ and f₂ are indicator functions. Let X be a

Banach space and A₁, A₂ be two closed convex sets in X,; the

condition displayed in (H) (10) can be translated by saying that

the "codistance" between A₁ and A2 [24, p. 4371 must be

strictly positive. This condition on the codistance is

appealing by its geometrical nature (see [24] for the
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properties); it allows, as well as the other displayed

conditions, to decompose the set of -normals to A₁

terms of normals to A₁.

Ո

A₂ in

2.2. Let f be a proper convex function on a certain locally.

convex space Y (paired with a space Y*) and let A: X → Y be

a linear transformation. Then the function g defined on X by

(f A) (x) if x < dom A

g(x) =

+00 elsewhere

is a convex function and the question is how to express agin

*

terms of af and the adjoint transformation A' : Y* X (where

as earlier x* is paired with X). As usual in such a situation

it is assumed that A (and A*) is densely defined with closed

graph. The basic assumption in our context is the following:

(Ha) g* (x*) min (f* (y) |Y* dom A*, A*y* x*) *x*.= €
=

Theorem 2.2. Let f be a proper convex function on Y, let

AXY be a densely defined linear operator with closed

graph. Assume that (H) holds for g = f A defined as in (2.4).

Then

a (foA) (x)
Ε

= A*af (Ax)

for all x < dom A that Ax € domf.

Actually, the statements of Theorem 2.2 and Theorem 2.1 are

equivalent in consideration of their contents. Indeed one can

pass from the framework "f₁+f2" to the framework "FA" and vice

versa by simple transformations. For example, in [41] the

framework "FA" is considered first and the results on "f1+f2"

are derived afterwards. Therefore it is not surprising to find

as conditions ensuring (H) a list of conditions (H₁) merely

corresponding to the (H). We do not consider to list all the

58
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(H) since they can be picked from [40] and [41. Theorem 191.

We shall be content with mentioning the most significative ones.

In the finite-dimensional case:

(H)

there exists x such that Ax e ri (dom f);

f is polyhedral and there exists x and such that

Ax domf.€ As for the infinite-dimensional setting :

there exists x dom A such that f is finite and

continuous at Ax;

(日)
о

X and Y are Banach spaces, fг (Y) and O lies in the

algebraic interior of (dom f - range A).

A further assumption, suitable for applications to abstract

control problems, may be found in [46].

Remark 1. Along the same lines, a formula generalizing (2.1)

can be derived for the "continuous" case, i.e. for the

continuous sum xXff (x) du(t) [14] [15] [16, §4],

as for integral functionals

IxL (f₁ (x(t)) du(t) (see pages 58 to 64 in [41]).
T

Remark 2. We do not claim any novelty in producing formulas

for the -subdifferential of f₁ + f₂ and foA.
2

of a (f₁+f2) under the assumptions (H) or (H✓✓7)
E

The expression

was used by the

author in [14], [15] and [16]; for finite functions, it was

rediscovered in [11]. Anyway, the two quoted formulas were

likely to be known by those who are familiar with convex

analysis.

0

2.3. Some Examples of Applications. The next examples illustrate

the utilization of chain rules (2.1) and (2.5).

°
Example 2.1. Let f гo (X), let x € dom f and let d be a

non null direction. Suppose, for example, that either

=

n

. x, f is polyhedral and (x+d) n dom f 0,

or

X = , (x+d) nri (dom f) 0,

f is finite and continuous at some point of (x + d).

or

.

.
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Then the function f

subdifferential at

f(x+λd) has its ε-

(where it is finite) given as

d) <f(x+1), d>

This is obtained by just applying

Α : λιλά.

Theorem 2.2. to f and

Example 2.2. Let f be a proper convex function on X, and

consider the problem of finding an approximate minimum of f over

a nonempty convex subset C. More precisely, given, we are

looking for x Cn dom f satisfying

f(x) inf f(x) + .
X€ C

The problem is the same as finding the e-minima of

xf(x) + (x | C) over X, and its solutions are the points x

such that O [f+8 (.|C)] (x). Theorem 2.1 gives sufficient

conditions for the latter relation to be expressible as

Ε

0 € U (a f(x) + (Cix)}.N

€2

£10

€12

This condition means that, for some positive 1 2 with

1+ 2 = ε, there is an element x* € a f(x) such that -x*
€1

E.

an 2-normal to C at xo

x is the apex of a convex cone, so that N (C;x)

The condition can be simplified if

for all 2 (see Example 1.1).

inequality constaint, i.e.

€2

=

N(C; x)

When C is represented as an

C = {x e x g(x) ≤ 0),

*

(2.7)

(2.8)

(2.6)

is

=
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€it is natural to try to express N (C;✗_) in terms of g(x).

Unlike the case = 0, one cannot restrict to those x lying

on the boundary of C and one cannot invoke cone properties of

N (C:). The comparison result, generalizing what is known

for 0, is displayed in [43]. We now illustrate relation

(2.8) in a situation particularly relevant for problems of

best approximation [20,28]. Let f (X) be continuous at

least at one point of its domain and let V be a linear subspace

of V, of dimension n. We assume that

°

int (dom f) n v‡ Ø,

and we consider the x V minimizing f over V within ε (relation

(2.7)). Then, a generalization of what is derived when = 0

[28, §8] is the following a necessary and sufficient condition

for xV to be an e-minimum of f over V is that there exists

r (1) extreme points x1,...,x of a f (x), s extremal
€

directions d...,de of a f (x), with r+s ≤ n+1, and positive

r

P.

Ε

= 1 such that
P1P1S'.

i=1
i

Σodev.
i=1

I

S

i-1

+
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3. THE E-SUBDIFFERENTIAL OF f1f2

3.1. Given two proper functions f₁, f2 one defines a new

function in the following way:

g(x) = inf {f₁ (×1) + £₂ (×2)}.

g is said to be the infimal convolution of f and f and we
'

shall use the notation g

said to be exact at x, =

= The infimal convolutionf₁v f £2°

x2 + x if one has

f₁ (x1)

1

+ ₤2 (x²) min (f₁ (u) + f₂ (v)}.
u, vex

u+v=x

Assumption (H+) was merely requiring that (f₁+f2)* = f (

with the infimal convolution exact on x*. As a general rule,

(f₁ f₂)
= so that the operations "+" and "V" are

dual to each other with respect to the conjugacy operation.

The description of a (f₁ v f₂) at a point where the infimal

convolution is finite and exact does not require any condition.

E

12

Theorem 3.1. Let f₁, f₂ be proper functions, let x =x+x

be a point where the infimal convolution is finite and exact.

Then

(₁₂) (x)"
=

€10 €20

{a

€2

2

(3.1)

is

=
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Conditions ensuring that the infimal convolution is exact at all

dom (f₁ V f2) are "dual" to those ensuring (H+). As for
example, the following hypotheses secure the exactness and the

resulting fi √ £2 in (X):
о

(H) f()f1f2 () and ri (dom f₁)
о

ri requirement may be deleted for either

may happen to be polyhedral;

ri(dom f₂) 0; the

index i for which fi

V

(H2 f1f2 (X) and there is x*€

is finite and continuous.

€ dom at which

Remark. A formula generalizing (3.1) to some

be produced for the continuous infimal convolution

extent can

du: x infiff(x(t)) du(t) | x(t)du (t) = x};
T

for such purposes, see [21], [47], [41, p. 63], [16 Chapter 41.

r

3.2. Applications. Let here X be a real Banach space E and let

f be a proper convex function on E. Performing the infimal

convolution of f with another "regular" function yields a

"Smoothing" or "regularizing" effect, as is usual with

operations of the "convolution" type. If denotes the norm

(function) and r a positive constant, the function f₁ = fvr|| . ||

does have some interesting properties which are described in

detail in [19, §31. In particular, it is noteworthy that f is

either identically equal to - or is Lipschitz (on all of E)

with Lipschitz constant r. The coincidence set of f and

fri.e. the set of x E for which f(x) f(x), can be fully

described and for all x where f and fr coincide, the following

holds:

=

r

εr
a f(x) = (xa€(x* f (x) | | ** || ≤ 1}, (3.2)

T
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where denotes the dual norm [19, Proposition 2.31.

now turn our attention to a particular case of the above

regularization and to another regularization process.

We

Example 3.1. Let S be a nonempty closed set of E, different

from E. Since the distance function de is unable to make a

distinction between int S and bd S (the boundary of S), we

introduced in [18] the following function :

As (x)
=

ds (x)
-

ase(x),

where S stands for the complementary set of S in E. Actually,

A is nothing more than a regularized version of the following

convex function HS (AS
=

Hs (x) + if x < s, -d (x) if x S.

Properties of HS and As from the convex analysis viewpoint are

displayed in [18]. Concerning the e-subdifferential, we

observe that the infimal convolution of HS and || || is exact at

x = x +0 for all x S. Thus, according to (3.2), one has

that

=
€** € 5, 45 (x) (x* (x) | || ** || ≤ 1}.

€

Example 3.2. Let H be a Hilbert space and let f € г (H).

Another regularizing process which is widely used in nonlinear

analysis consists in taking for any r > 0,

= f V

Or is everywhere finite on H and the unique point x where the

function uf(u) + ||u-x achieves its minimum is
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xr
=

prox/r(x),

the "proximal point of x relatively to [34]. The optimality

condition yields that r(x-xr) € af (x), which can be rewritten

as :

= (I +
xr af)(x).

af)-1 is the so-called "resolvant mapping"The mapping (I +
r

of af [5]. is known to be c¹,1 (i.e. or is differentiable

and its gradient mapping is Lipschitz) with vor (x) = r (x-x)

(f(x)). As for the e-subdifferential of ✓ we easily

deduce from the rule (3.1) and from the e-subdifferential of

11.112

r'

|| . || that

'

r

Є'r
(x) =

€ 1 € 220

€1+€ 2

€2 [B])(x) (x-x) + √22B1).[rn

where B is the closed unit ball in H.
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4. THE E-SUBDIFFERENTIAL OF max f

ic I
i

4.1. Let (fie I be a collection of proper convex functions

and let f max fi. It is known that, under suitable
ie I

assumptions, any subgradient of f at x can be expressed as a

convex combination of subgradients at x of those fi which

satisfy f (x) = f(x). The situation is different for the

E-differential%;B due to its non-local nature, the knowledge of

f(x) requires a priori the knowledge of a fi (x) for all

The calculation of the conjugate function f* in terms of

f* is not without trouble; for more convenience we shall deal

with the case where I is a finite index set {1,...,m).

E

iЄI.

€

Theorem 4.1. Let f₁.....fm be convex functions finite on the

entire space X, and suppose that all of them except, possibly,

one are continuous. Then x f(x) if and only if there

exist vectors x, i = 1,...,m, non-negative ai = 1,...,m,

adding up to 1, and non-negative &₁,i=1,...,m, such that

(a) x = Σ

i=1

i=1

fi (x) for all i such that a > O.
є д

;

(b) c₁+f(x) (x).Σ a₁₁ = EF
Σ

i=1

Proof. Under the above assumptions, for every x" € dom f*,

there exist vectors x € dom f, i=1,...,m, and positive

ailm, adding up to 1 such that

m

m
m

(c)

*
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f*(x*) ₁ f(x),

m

m

i=1

3

i=1

(see [21,p.66] or [23,p.178]).

f(x) is known to satisfy f* (x*) + f (x) -

relation can be rewritten through the above-mentioned

elation as

[f(x) + f₁ (x0) <><

i=1

+af (x) - f(x).
i

m

i=1

=

This inequality is equivalent to the existence of non-negative

'1'
= 1,...,m, satisfying:

m m

E = € +

i=1
i i
f(x) -

f(x),
i=1

f(x) + f (x) - for all such that >0.

Whence we derive the desired result.

In a set-formulation, the result of Theorem 4.1 can be rephrased

f(x) { [
Ε

i=1

()()(af) (x) la 20, 1
i i

= 1; €20,

},).

m

i-1

(4.1)

==

m

+(x) (x) =f€i
-

i-1

a

m m

a formula announced by Kutateladze [27].

Remark. When I is an arbitrary index set and fi € г (F) for

all icI, a formula giving (sup f₁) * does exist [40, Theorem 16.51.
i<I
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The problem however is to give sufficient conditions ensuring

that

(a) (sup f₁)* (x*) = min{f(x))
icI ic I

where for each x* the (attained) infimum is taken over all

representations of x*as a convex combination ax Moreover,
ic I

*

it is known that the infimum can be taken over all expressions.

of x as a convex combination in which at most n+1 of the

coefficients a are positive and the corresponding x are

affinely independent [40, Corollary 17.1.31. Usual conditions

ensuring (H) require some additional assumptions on I (I

compact space) and on the mappings i

semicontinuity); for a generalization of formula (4.1) in such

a case, see [43].

- f(x) (upper-

4.2. The result of Theorem 4.1 is of importance for theoretical

considerations as well as from the computational viewpoint.

We illustrate its wide range of applicability by two examples.

Example 4.1. Let g: X-R be a convex function and

consider the function g' (g" = max (0,g)). What is the exact

According to formula (4.1),
Ε

+ +

n

expression of ag in terms of a g?

we have that

g'(x) ((ag) (x) 10<<l,n>0,n+g(x)
n

- ag(x)

For each a € [0,1], let n (a) = -g (x) + a g(x); then

(x) =

+

()(g)an (a) (ag) (x),

with the convention that a (ag) (✗) is empty whenever n < 0.0

Example 4.2. Let

n

...a be in x let m
m

be real

= e).
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numbers. We set f (x) = max (<a,x>+c). Then one easily

checks that

i=1,...,m

a f(x) ΕΣ aala 20% = 1,

m

i=1

m

i=1

f(x)

m

=

i=1

(<a> ). (4.3)

When f is the maximum of a finite number of quadratic functions,

the formula giving exactly a f(x) is derived from (4.1) and

results in Example 1.4.

€

-
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5. THE E-SUBDIFFERENENTIAL OF σof

Let f X (-0, +00] be a proper convex function and let

o (-0, +] be an increasing convex function.= By posing

σ (+∞) = +∞, we get a new convex function of: X- (-0, +).

The question in this section is to give the exact formulation

of (of) in terms of off (✗)] and a f(x).
E E Ε

We first note that (to) CR for all to dom σ. A

general usable) result is hopeless without any assumption on

the overlapping of f (dom f) and dom o. The following (mild)

assumption will be made (Kutateladze [25], [26, §3.71):

(H) f (dom f) n int (dom σ) 0.

Theorem 5.1. Let x be such that f(x) € dom σ. Then

** € (°f) (x) if and only if there exist non-negative 1'

and t such that
€2

(a) + ει = € 1€2€1

(b) t

€1
[f(x)], x € a (t* £) (x).

€2

Proof. Under the assumption (H°), the following holds

(Kutateladze [25], [26, §3.71) :

(0°f) * (x*) = min (t*f)* (x*) + o* (t*) It*> 0}.

Let x € (σ°f) (x); then there exists t* > O such that

(t) (x)+0"(t) + atf(x)) <****

€

-
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which can be rewritten as

(t*f)*(x*) + t*f(x)
-

*(t) off(x)) - t'f(x) .

Whence the announced result is easily derived.

The result of Theorem 5.1 can be simplified when σ is positively

homogeneous (see Example 1.1). As for example, if σt t

one extends formula (4.2) to arbitrary convex functions f.

Another application worthwhile mentioning is now displayed.

Let f be a proper convex function on X and let C be defined as

cxcx g(x) < 0},

where g is a finite convex function. We consider the problem

of characterizing the e-minima of f over C (see Example 2.2).

By setting o(t) = 0 if t≤ 0, + elsewhere, the above problem is

equivalent to finding the E-minima of x f(x) + (0°g) (x)

over X, and its solutions are thus the points x satisfying

Oa (f+oog) (x).
Ε

We suppose that

(H)

there exists a point of C where f is finite and

continuous,

there is XC such that g(x) < 0.

Observe that the latter assumption is nothing more than (H°).

for the particular invoked σ. For such a σ, we clearly have

that

(g(x)) (t* 0❘n+t*g(x) > 0) V x<c.a

Hence a straightforward application of Theorem 2.1 and Theorem

71

=



5.1 yields :

Theorem 5. 2. Under the assumption (H), a necessary and

sufficient condition for x C to be an e-minimum of f over c

is there exist non-negative 1 2 3 adding up to and a

non-negative t* satisfying

(a) Ое д f(x) + a
€1

(t*g) (x),
€2

(b) E3 + 20.€ t*g(x) > 0.

The above result was announced by Kutateladze [27] in a setting

dealing with convex operators, and proved by Strodiot et al [43]

through a different approach.
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6. THE E-SUBDIFFERENTIAL OF A MAGINAL FUNCTION

Let f x x Y - (-0, +] be a proper convex function, where as

usual X is paired with X and Y with y*. The marginal function

is defined on X by

(x) inf f(x,y).

YEY

(6.1)

For all x such that (x0) €, let M(x) denote the set of

elements (if any) for which the infimum in (6.1) is attained.

If M(x) is non-empty, it comes from the e-subgradient inequality

that

(x*x*(x,0) a (x+y)
E

€

for all Yo € M(x).

(6.2)=

Let us particularize the result (6.2) in the case where the

marginal function is defined at x through y constrained to a

set F(x). Let thus F: XY be a set-valued mapping whose

graph ((x,y) XXY | yeF(x)} is denoted by F, and let Фр defined

as

Op(x) = inf
y = F(x)

f(x,y).

We denote M (x) the set of Yo € F(x) for which

Op (x) = (x + yol The next result gives the description of

the -subdifferential of F*

Theorem 6.1. Let f be a proper convex function on XxY, let

F: XY be a set-valued mapping with a nonempty convex graph

Assume moreover that there is a point in F at which f is

finite and continuous. At a point xo where F is finite and M_ (x)

F.
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non-empty, let us choose any Yo in M (x); then we have the

following: x € a (x) if and only if there exist
*

adding up to such that

(x*,0) a
€1

f(x,y) + N (F; (x,y)).

Proof. Since 8 (y | F(x)) = 8 ((x,y) F), can be rewritten as

F(x) inf[f+8 (F)] (x,y).

y<Y]

According to (6.2)), we have that

a d

F
(x(x,0) atf+8 (F)] (x+y)

whatever yo M(x). Theorem 2.1 applied under the

assumption (H) thus yields the announced result.

+

As an illustration, let f be dependent on the only variable y

and let FxF(x)=(y Y| Ay = x), where A: Y X is a

The marginal function associatedcontinuous linear mapping.

with these data is then the so-called image of f under A,

(Af) (x) = inf {f(y) | Ay = x).

Here, the 1-subdifferential at (✗O'YO) of f considered as a

function on XxY is (0)× a f(yo), while N (Fi (x)) doss
€2

not depend on 2 and is reduced to

€1

{(x*, A*x*) x € x*).

Consequently, the result of Theorem 6.1 is rewritten as

a (AL)(x) ix A x fly)),a
€

where Yo satisfies Ayo =xo and (Af) (xo) f (yo)
=

=

=

-
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Remark. The calculus rule (6.4) is a general result which

can be proved in different ways. Actually, results (6.2) and

(6.4) are of an equivalent nature since one can pass from one.

to the other one by simple transformations.
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7. LOCAL BEHAVIOUR OF THE E-SUBDIFFERENTIAL

We

Throughout this section, X = E is a Banach space (paired with

XE topological dual space of E) and fro(E).

denote by B (resp. B*) the closed unit ball in E (resp. in

In this section we are interested in the local properties of

a f(.) dom fx + C(E')
σ

e(3'x) f(x),
E

€

where C (E') denotes the collection of all o (E',E)-closed

subsets of E'. When x int (dom f), a f(x) is, for any

a non-empty (E',E)-closed bounded (convex) subset

We recall that the Hausdorff-topology on the collectionE'.

'

Co,b (E') of all non-empty σ (E',E)-closed bounded convex subse

of E' is the topology in which, for each ce Co,b (E'), the se

of the form

{D* € Co,b (E) | D* C* + *B* and C* D* + B*

constitute a fundamental system of neighborhoods of c* as a

ranges over *. The Hausdorff-topology on Co,b (E') can be
defined by a metric (the so-called Hausdorff-distance h) whose

definition in a dual way is as follows :

=
-VCD C, (E) h(C,D) sup 18* (4]C*) — 6*(40*)b (dc)

deB

Behaviour of a f(x) as a Function of Evidently,7.1 E.ε.

€

a f(x) decreases as a decreases to O, and the intersection

the nest a f(x) is just af (✗). The rate of convergence of a f
ε

E

76



towards af (x) when goes to 0+ may be very bad; see for

example the case of quadratic functions in finite dimensions

(ef. Example 1.4) where h(af (x), ) f (x)) behaves as

Even more, when E is not finite-dimensional, it is not certain

that for all > 0, there exists a > O such that

Ψε «[0,αί af (x) + B*. (7.1)f(x)

The next statement, due to Robert [39, Part I gives conditions

for an approximation result like (7.1) to hold. For the rest

of this section, we shall assume that there is a non-empty open

eet on which f is bounded above.

Theorem 7.1. Let x lie in the interior of dom f.

following assertions are equivalent

The

(a) f(x+ h) = f(x) + f'(xh) + (h) || h ||, with

lim (h) = 0;

h+o

(b) [f(x+id) -

in dB when +

(c)

converges to f'(xo;d) uniformly

(d)

for all 8 > 0, there exists a > O such that

WE [0,al, a f (x) = f (x) + B*;
ε

for all > 0, there is a neighborhood V of xo such

that x V, af (x) c af (x) + B*.

f is said to be Fréchet-subdifferentiable at those points where

one of the above equivalent conditions is satisfied. The

discrepancy which may occur between the convergence of

[f(x+id) f(x)]-

-1

to f'(xo;d) for each d and uniformly in

is of the same nature as the difference between Hadamard-

differentiability and Fréchet-differentiability. According to

result, the rate of convergence of a f (x) towards

af (x) is closely related to the rate of approximation of

f'(x,id) by [f(x+id) - f(x Actually, in proving the

equivalence of (b) and (c), Robert showed the following
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relationship.

10 such that
о

Let 80; if (b) is assumed, there exists.

* 10,1], de B, [f(x+d)-f(x)]¹ f'(xoid) + 6/2.

E

Then, α = (61)/2 satisfies the requirement of (c). When and

E' lie in the Hausdorff-distance between a f(x) and

f(x) is estimated in the following manner [19, Theorem 3.31.

Then for all >0 thereTheorem 7.2. Let xint (dom f).

exists k such that

h(f(x) f (x)) =
€

for all, ' in 10,1.

k

7.2. Behaviour of a f(x) as a function of x.

noting two properties.

min (ɛ,')

Firstly, let rg (af) denote (for >0)

the range of af, i.e.

rg (af)
Ε

E

Ε

Xedom f

Let us begin by

f(x).

It is a mere consequence of the approximation result of

Brøndsted and Rockafellar [7] that the closure of rg (af) in E'

is independent of e, namely

Ε

cl rg (af) = cl rg (af)

for all >0. Secondly, due to the fact that f is locally

Lipschitz on int (dom f), for all xint (dom f) there is a

neighborhood V of x such that Ua f(x) is a bounded set of
X<V

€

E'. The main result concerning the behaviour of a f(.) is the

following one [19, Corollary 3.41.
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Theorem 7.3. Let xint (dom f), let >0. Then there exists

a neighborhood V of x and a positive k such that

h(a f(x), a f(x')) < || x-x' || (7.3)

for all x, x' in V.

Since

h(a f(x), a f(x')) sup f'(x; d) f(x';d),
de B

f(x;d) is, for each de E, a locally Lipschitz function as a

function of x. A natural question which arises now is :

does the (usual) directional derivative of f(.;d) exist?

This question was answered recently by Lemaréchal and Nurminskii

[31] in a particular setting. We shall recall the statement of

their result and provide an interpretation of it as well as some

corollaries. Let f be a convex function and suppose

that is finite everywhere.

equivalent to

:

This assumption is known to be

f (d) = +00 for all d % 0.

In Rockafellar's terminology, such a function is called co-

finite [40, p.116]. If f is co-finite, the same obviously

holds true for f*. As already seen, the support function

f(xd) in the d direction of a f(x) is the optimal value of
€

(max<x*,d>

(P)

f* (x*) + f(x) -

The assumption that f* is finite everywhere is a technical one

to ensure that the function defining the constraint set in (P)

is finite everywhere. We note incidently that this assumption

implies that

-=
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af (x) int (a f(x))

for all Rwn.
n

Let now x, >0 and d/o be fixed. A further

consequence of having f co-finite is that

M₁(x) (+1 (10) = min r(u)}
με τ

f

is a (nonempty) compact interval of which turns out to

=

equal

(1/10 (1) = min (A)}
λεξ

(see Propositions 1.3 and 1.4 in §1). The Kuhn-Tucker

coefficients μ for the program (P) are those satisfying

(<x*,d> = f(x)

- (* (x*)-x).

Since 0, the latter relation can be rewritten as xeaf (x+

Lemaréchal and Nurminskii [31] showed that the above

coefficients were just the μ defined in (7.4). Now, their

main result comes as follows :

Theorem 7.4. For a given direction 8, the differential

quotient [f(x+;d) has a limit f" (x;,6),

and

-

f(xo;d)] s

"(xid.) = min

Ε

max

H&M (x) x*εf(x)d

fut<x>-f'(x))

(7.6

= =where f(x)d (x*ea f(x)|<x*,d> f(x1)). Moreover,

the operations "max" and "min" can commute in (7.6).

€
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interpret formula (7.6) as a sensitivity result for the

mathematical program (P). Indeed, f(xo;d) is the optimal

of program (P) while f'(x+s8%;d) is the optimal value of

(PS)

(max<x*,d>

£* (x*)+f(x+8) <+> <0.

difference between (P) and (Ps) lies in the definition of

constraint set. Actually, (P) can be viewed as a
S

erturbed version of (P). Let x be a solution of (P), i.e.

caf (x+s); we clearly have

£* (x*)+(x)-<x max <x>-f'(x)

xa f(x+s) a

f(x+sô;d) ≤ max

o that

Cc

(7.7)***

<x*,d>

* +

×

's

u =

(7.8)

is (for all s>0) the constraint set defined in (7.7.)

ue to the upper-semicontinuity of the set-valued mapping

a f(x+s) the expression occuring in the right-hand

ide of inequality (7.7) is " approximately "s.u. with

max

xx

[<x-(x8)]. (7.9)

, since f(xo;d) max <x*,d>, we have that

x

=

-
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max<x*,d>-

× C

xd
f(x+s8;d)-f(xid)

S

S

max

We now turn our attention to particular situations where the

formulation of f" (✗;d, 8) can be reduced to simpler expressions.

The next corollaries can be viewed as complements to works

[31] and [1].

+

One could operate in a similar way to obtain a lower bound on

f(x+s8;d) of the form max <x,d>, 'where C is a constraint
x*CS

a

set akin to (c) in its definition. Now, due to the

interpretation of the set of Kuhn-Tucker coefficients in terms of

marginal function associated with perturbed versions of (P),

one can interpret f" (✗;d, 8) (through (7.10) and a companion

inequality (7.10)) as the support function (except for the

sign) of Ma (x) in the direction u defined in (7.9).

Comment. As indicated earlier, Theorem 7.4 was proved by

Lemaréchal and Nurminskii under the assumption that f (is

finite and) has an everywhere finite conjugate function f*.

Under the only assumption that f is a finite convex function,

the same formula (7.6) has been proved very recently by

Auslender [1].

Let v denote the function x V,d(x) = f(x;d).,d Vd(x)

According to Theorem 7.4, v admits a directional derivative
E,d

, (x0;8) at those points x where it is differentiable.

Firstly, suppose that & satisfies the following assumption:

(Aa) the linear form x* <x*,8> is constant on a f(x)d

о
This assumption merely says that the width of a f(x)d in the

direction is null, or equivalently that 8 belongs to the

orthogonal subspace to the affine hull of a f(xo)a. Clearly,
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For thoseod (pc) is among the & satisfying (A).

directions & such that (A) holds, we have that

V (6) min
<M (x)

futa-f'(x)))

where a is the constant < f(x0) d'>.

11

In particular, (Aa)

is satisfied by all directions & whenever a f(x) d is reduced
to one element x. In such a case,

v, (x:6)
min

нема (х)

E,d

is a concave function, so that -v
-VE is quasi-differentiable

at x in Pshenichnyi's sense [38, Chapter 31. We therefore

have:

Corollary 7.5. Let x and d be such that a f (x0)d is reduced

Then -v is quasi-differentiable at
€,d

a single element xto

x and the quasi-differential a* (-V,d (x0) of -ve
is given as

,d

(d)(x) (
=

at x

(7.11)

Proof. -V,d) (x) is defined as the set of x* satisfying

maxv'εd (x;)
=

{ute (x) <>{µ[f'(x)
-

-

Hεм (x)

for all 6. Consequently, due to the expression for the

subdifferential of a maximum of convex functions (see for

example [28, p. 3551), we have that

*(-)(x) = co{ (af (x) - x))
немаa (x)

-

Ε
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But since Ma (x) does not contain negative elements, the above

set is nothing else than Mg(x) taf (x-x.

E,d
Since v is a locally Lipschitz function, it has a generalized

gradient av in Clarke's sense [10] at all %
E,d

the exact evaluation of av ,d(x)?

What is

The expression for av
E,d

as well as consequences of it are given in [1] in the case

where M(x) is single-valued in a neighborhood of xo' The

result described in Corollary 7.5 suggests instead to look at

the counterpart situation, namely when a f(x) is single-valued

in a neighborhood of x. We than have the following result:

E

E
Corollary 7.6. Suppose a f(x) d is single-valued in a

neighborhood of xo. Then

=(x) = *(v(x) - M₁ (x) (x²- f(x)),av, (x)

where x stands for a f(x) d
E

Proof. At a point x around x where va is differentiable,E, d

are quasi-differentiable withboth v and -v

E,d E,d

ε,d(x)(x)=-3(-) (x) =

{VV, (x)}.

Therefore, a mere consequence of (7.11) is that

V

,d
is differentiable at x <->

both Ma (x) and of (x) are

(single-valued at x.

Thus, again from (7.11), at all x₁ (in a neighborhood of x)

where v
E,d

is differentiable, we have that

VV,d (xi) Ha(x) (x(x) Vf (x)].
Vv

Now, the mapping which assigns to x the unique element ✗✓ (x) of

of f(x) is continuous (since, as a general rule, the set-
Ε

valued mapping xaf(x) d is upper-semicontinuous).
E

Similarly,

=
-

7.12)
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Similarly, the upper-semicontinuity of the set-valued mapping

x(x) (see [31] or [1] ) makes that lim supa (x))} <M (x).
1+00

Hence the result (7.12) is easily derived.

There is a situation where the assumption of the above corollary

is automatically satisfied around any x in ", that is when

f is differentiable on all of . The precise statement is

as follows :

Corollary 7.7. Let f be

n

differentiable on ". Then,

for all x < pn,

(x)
=

- Ma (x) (x(x) - Vf(x)], (7.13)

where x(x) is the unique element of a f(Ex)

Proof. Since f is differentiable, f* is strictly convex on

[40, p. 253]. Therefore, the program (P) whose constraint

set is defined through f* has only one solution x

If f is strictly convex, Ma (x) is single-valued for all x (see

for example [31] or [1]). Thus, as a by-product of (7.13), we

obtain the following "global" statement already observed in [1].

Corollary 7.8. Suppose that f is differentiable and

strictly convex on n. Then v

differentiable and

is continuously
E,d

(7.14)VV, (x) =(x) (x(x) f(x)]

for all x.

Since the "strict convexity" and the "differentiability" are

dual properties [40, Section 26], if f is differentiable and

strictly convex, the same holds for f*. The correspondence

between f and f* is precisely the Legendre transform [40,

Theorem 26.61; it would be worth getting a better insight into

the relationship of v (associated with f) with the
E, d

corresponding v* associated with f*. A(rather trival)

illustration of (7.14) is in considering the example of

quadratic functions (see Example 1.4). In such a case, the

E,d
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unique x(x) of f(x) is

1/2

х(х) = Ax+b+
2€

<Ad,d>
Ad,

while Ma (x) is reduced to "(x)
<Ad,d>

2€

Consequently, we have that

f(x14,6) = <Ad, 6>

whatever > 0. Of course, the result could have been obtained

at once from the expression for f (x;d). Nevertheless, this

example shows a noteworthy feature (refer to (7.14)): when

E+0+, then a (x) Vf (x)] 0. So,+ + while [xa (x)
-

even in the situation of Corollary 7.8, the behaviour of

VV,d(x) could be wild when +0+.

=
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8. CONCLUSION

E

In this paper, we reviewed the main properties and calculus

rules of the -subdifferential of a convex function. The

definition of af was peculiar to convex functions and all the

material related to it heavily rested on tools from convex

analysis. Actually, another definition was proposed by

Taylor [44, p, 7451 but for different purposes. For a class

of functions close to that of convex functions, the so-called

weakly convex functions, Nurminskii and Zhelikhovski [36]

proposed a concept of E-quasigradient and gave an iterative

procedure for the minimization of weakly convex functions,

formulated in terms of e-quasi-gradients. In the locally

Lipschitz case, the only concept of e-generalized gradient we

are aware of is the one given by Goldstein [13]. However his

definition is a local one and cannot reduce for convex

functions to the one used in this study.

As for the function (d, 8) f (x;d,8), it is not clear

whether it could be of some help for defining a generalized

Hessian matrix for convex functions. Introducing such an

object, tractable from the computational viewpoint, is of main

concern in the current research in convex analysis.
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