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PURPOSE AND SCOPEL

The appropriate supdifferential of a convex function nas bpeen
proved to be a wuseful tool in convex analysis, from the
theoretical viewpoint as well as for practical purposes. Giv.
a convex function f defined on X, the approximate subdifferent
a.f(.} which assigns to (x,c)c¢ X x E, the so-called e-
subdifferential of f at x turns out to have remarkable propert,

The properties of the subdifferential set-valued mapping

x =X 5f(x) (i.e. for € = 0) as well as calculus rules on

subdifferentials are widely known in convex analysis [3, 8, 12,
225 284 33; 40). As for the c¢=-subdifferential a:f, whose
definition is just a "perturbation by ¢" of that 6f oL, it
enjoys, for ¢ > O, some noteworthy properties different as for

their nature from those of the "exact" subdifferential.

Moreover, exaet rules on ¢-subdifferentials, generalizing those

established for ¢ = 0, do not seem to be well-known. Our ain

in this paper is two-fold : firstly to get a better insight int

the local behaviour of d_ f(x) around a given X, ! X, secondly,
to survey the main chain rules on st-subdifferentials.

One of the reasons why the properties of 8f and 3.f may be

different is that 5f is a local notion while 9_f is a global om

To be more explicit, the e-subdifferential of f at X5 is define:

as the set of x' ¢ X' satisfying

£(x) > £(x ) + <X ,x-x_> -

for all x. a_f(xo} may be very sensitive to the variations of |

f, even when those variations do not hold in a neighborhood of

xo' From the geometrical viewpoint, 3 f{xo) is closely relatelf

to the closed (convex) cone with apex {xo,f(xo) - ¢) generated
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by the epigraph of f (epif). When ¢ > O, this cone is known to

be composed of two convex cones: the cone with apex

(xo.f{xol- £) generated by epif and the asymptotic cone (or
recession cone) of epif [9]. The latter cone takes into account
the behaviour of f when x is "far" from X The necessity, a

priori, of knowing the behaviour of f on all of X for the
calculation of aEf(xo) is corroborated by the fundamental
approximation result due to Brgndsted and Rockafellar([7].
Roughly speaking, the result states that the more precisely you
desire to know BEf{xo), the farther from X, you need to know
aLAR]s However, this disadvantage is weighted against the good
effects wrought by the perturbation by €. For example, the

use of the e-directional derivative fé(xo:.}(i.e. the support
function of aEf(xO}) as a substitute for the usual directional
derivative has been proved advantageous in many algorithms of
convex optimization; see [2,29,30]land references therein. As
for the continuity property of 3 f£(.) as a set-valued mapping of
both x and £, the main result goés back to the comprehensive
study by Asplund and Rockafellar [0 ]. In particular, they
proved that for a lower-semicontinuous convex function defined

on a Banach space, the approximate subdifferential

0 £il.) & 1) t:: aff(x) was continuous in the Hausdorff

sénse on int(domf) XJE:. More recently, Nurminskii [35] showed
the locally Lipschitzian behaviour of the e-subdifferential of a
finite convex function defined on En: this result was improved
and generalized in various ways in the author's companion paper
E183. Section I and VII of the present study are along the
lines of the above described local properties of the approximate
subdifferential.

Like for the subdifferentials, calculus rules on g-
subdifferentials are of importance; in many situations it is of
interest to have expressions of e¢-subdifferentials of a convex
function g which has been constructed from other convex functions
whose properties are better known. For example, g might be a
sum or supremum of convex functions %‘. Various formulas

yielding some elements of 9 g(x ) in terms of the a”fi(xo} have
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been established in the literature. However, very little Seep,
to be known concerning the exaect expression of af g(xol in terp,

of the an fi(xo], except maybe when g is a sum of functions

(g = fl+f2} or results from the composition of f with a linear

mapping A(g = f-A). In this paper we drew up a panorama of

the main calculus rules on e-subdifferentials and we join to
them various conditions sufficient for this or that formula to
valid. The reader will have noted that all the chain rules '
presented here generalize what is known for subdifferentials
and the sufficient conditions for their applicability are
exactly the same as for € = 0. Concerning these calculus rulg
one should mention that general results dealing with convex |
operators (1.e. convex vector-valued functions) have been
announced recently in a note by Kutateladze [27]. To a certain
extent, Kutateladze's formulas cover the greatest part of chaip
rules displayed here. Nevertheless, we seize the opportunity
of treating real-valued functions to present conditions of
applicability peculiar to that context and to provide the proofs
of formulas.

We assume that the reader is familiar with basic definitions

and properties from convex analysis.
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1. PRELIMINARY DEFINITIONS AND PROPERTIES

As it is customary in the context of convex analysis, we work in
the setting of two locally convex (real) topological vector
spaces X and x*paﬁred in duality by a bilinear form

(X,x ) +> <x,x > (see, e.g., [33,§61, [28, 56.3) or [41,§3]).
The most usual example of paired spaces is obtained by
considering as X a locally convex Hausdorff topological vector
space, as X* the topological dual space of X, and

<x,x*> = x*(x) as the pairing on X x %" .

Throughout we shall deal with proper'convex functions (a
function f is said to be proper if f is not identically equal
to +» and if f(x) > -» for all x), and we shall denote by
Fo(x) the set of proper convex functions which are lower-
gemicontinuous (l.s.c.).

Given a proper function f, the e-subdifferential of f at
xo ¢ domf (dom f is the set where f is finite) is defined for

*
each € > O as the set of vectors x" e X satisfying

£R) > B ) *oaml we¥ pik (1.1

for all x ¢ X.

The set of such vectors, denoted by a f(x ), is closed
convex set in x which reduces to the subdlfferentlal af{x )
when ¢ = 0. Moreover, if f « O(X), BE f(xo) is nonempty
whenever (xD ¢ ‘dom™t~and). & > 0% Geometrically (l.l1l) says that
the epigraph of the affine function passing through (xo,f(xo}-s}
and of slope x* contains the epigraph of f. This definition,
as it is, shows that the behaviour of f on the whole space X
may be relevant to the construction of a fi{x] for®es » O.

There are two fundamental ways of characterlzlng a s 3 (5o T
through the conjugate function £* and with its support function.
Since they both will be used in the sequel, we recall these
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characterizations as well as some easy consequences which cap .
derived from them.
Proposition 1.1

g 3 f(x,) if and only if : |

f{xo} + f*(x*} - <xorx*> L E | (1_¢_

When f FO(X), £ and £ (c FO(X*}i piay a symmetric role; the.
(1.2) is equivalent to : X, € BEf Bl [ As the above formuls;
illustrates , the knowledge of f* suffices for the
calculation of aE f{on. Actually, all the chain rules
concerning the e-differentials which will be displayed later
hinge on formula (1.2).

Example 1.1. Let f ¢ I' (X) be positively homogeneous (i.e.)

o}
ElAR) = AX(x) for all % « ¥ and'x > QY. For such an £, f* is
the indicator function of 3f(0). Hence, for all X, € dom f,
9. Lk ) = fx" e af(0) [Pexiin’> > £lx ¥ = el.

In particular, let X = E be a normal vector space and x* = E' b
its topological dual space endowed, for example, with the
o(E',E)- topology; 1let ¢ designate the normal function on E ax

Yy the dual norm on E'. Then

0.9 (x ) = {x"[p(x") < 1, <x_,x"> > ¢(x) = e).

Example 1.2. Let C be a nonempty closed convex set in X.

The set NE[C;XO) of e-normals to C at Xy € C is defined as the

e-subdifferential of the indicator function §(.|C) at X v e

NF(C:XOJ = {x*(x*| ﬂx*,x-xo> £ e for all x e Cl,

In a dual formulation, x= N_(C;x_ ) if and only if i
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s*(x"|c) - <xo,x*> < & 0

As a general rule, NE{C:XDJ is no more a cone so that duality
results on cones cannot be invoked when dealing with it.
Incidentially, note that the notion of e-normality is unhelpful
for defining a concept of "approximate tangent cone" to C at X -
What can only pe said in general is that NE(C;xO) is a closed
convex set contained in the pbarrier cone of C, and whose
recession cone is N(C;xo).

n

Example 1l.3. Let f : © — (-», +x] be a polyhedral convex

function [40, Section 191. For such a function, the level sets
are polyhedral convex sets and the conjugate function is
polynedral. Consequently, for all xoedom.f, BE f{xo) is a
polyhedral convex set. 0
Tne characterization of 3_.f(xg) in terms of its support function is
given by the following result [40, pp. 219-2201.,[33, p. 6711].
Proposition 1.2. Let chO(X); then the support function of

9. f(xol is given by

f(xo+ld} - f(xo} + €

d+— f£'(x :d) = inf . [ 41.3)
E o] A>0 A

Observe that, as it is; the formula giving f;(xo;d) again

emphasizes that, for € > O, the infimum of the approximate

differential quotient [f(x_+Ad) - £(x ) + 12”1 (or an infimum
within a > 0) may be achieved "very far" from the concerned
point x_. The example of x —— |x| at x_ = 0 1is illustrative
oFf that.

Example 1.4. Let f be a quadratic function defined on E" as

fiix) = d<hx, x> + <h, x> + &,

where A is a symmetric positive-definite nxn matrix, b a vector
: n
in # and c¢c a real number. This is an example where the e¢-

directional derivative f;(xo;d) is easy to calculate. Given
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X, € B" and a d direction, the definition (1.3) yields for ¢,

particular f involved

A
fé{xo;d) = <Axo,d> + <b,d> + (2 <Ad,d>)".

The function 4 - {2E<Ad,d>]% is known to be the support
function of the set {x*]<x*,A_lx*> < 2e} (see [40, p.119}).

Hence we have that

* * -1 *
9, Elx.) =A%, + b+ {x |s3" sk "% .5 2e}

* * %
= vf(xo) + {AY <Ry ,¥ ¥ ‘< "2eri (%)
We note in this example that even if f'(xo;d} = lim + f:(xo;j
£ -PO+
the difference fé(xozd] - f'[xo:d) may decrease slowly, as
1

slowly as €%,
For fixed ¢ > O X £ dom f(f ¢ FO(X)) and d # O, the
behaviour of the function

f(x0+kd) - f(xol 2

de ¢ A b—> 3

on E: is of particular importance in the way of approximating
f'(xo;d). Of course, d is chosen among those which are of
£

interest , i.e. those for which there exists % ]O,+>] such tn
{xo + Ad|O0 < A < x¥ & dom £, The behaviour of dg near o' and

+o is known since

lim qf(k) L S L S
h+o+

(*)

Of course, there are various ways of obtaining this formula;
see for example [30, p. 381.

50



and
f(xo+kd] = f{xo)

lim g (A) = sup : = § (d).
A>0

A+

Here, f_ is what is known as the recesston function of £ (or the
asymptotic funetion of f). The function fd : A — f{xo+ld}
occurring in the numerator of de is a function of FO(E) which is
finite at least on [0,A[. Obviously g, is a lower- semi-
continuous quasi-convex function on F}. Even more, qg enjoys a
pseudo-convexity property in the sense that the stationary points
of dg in E: are also the glopbal minima of de ©on E:. Let us make
this more precise.

Proposition 1. 3. Ay € BE* is a global minimum of qe on B* if

and only if

qf(ko) e of [lo). O (1.4)

d

Proof. Immediate from the definitions. U

Under mild assumptions on f, we have that

afd{lo) = <3f(xo+kod), d> .0

so that (1.4) is rewritten as

qp(A,) € <df(x_+Ar d),d >. (1.5)

This relation deserves some more explanation. For the sake of
simplicity, let X = E be a Banach space and £ : E — K be a
continuous convex function. Such a function is locally
Lipschitz on E and dge is now locally Lipschitz from E: into E.
A necessary condition for lo ¢ B: to be a minimum of de on E:
is that

O ¢ 9 qf(ho) ' (1.6)
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where qu stands for Pshenichnyi's quasi-differential

£38, Ch. IIIlor, equivalently here, Clarke's generalized
gradient of d¢ E1O 1. It is now just a matter of applying
existing chain rules (41, [17, 18] to obtain that

o -
aqf(koi = % [<af[xo+k0d),d> qfuon.

Plugging this expression in the condition (1.6) just yields

S  I
The reason why the necessary condition for optimality (l.§

g
|

is also sufficient can be explained by the following:

Proposition 1.4. The function r_ defined on EY by

rf(uJ = qf(

is convex.

While dealing with finite coercive functions, Lemaréchal and
Nurminskii [31] noticed the above property as a by-product of,

duality result. However, the result can be derived in the

general case from noticing that the function p +— u f{xo+ g)is

* -
convex on E+. The latter merely comes from the following :
given an interval I « E:, B(u) is convex on I if and only if

TR % ) is convex on I.

o .
Obviously, AD ! E: is a minimum of dr on E+ if and opnly if
L 5= lfho is a minimum of re on E:. Now the necessary and
sufficient condition for optimality of Hg > 0, O e d rf(uo},

is made equivalent to (l1.6) by a chain rule (on generalized

gradients of arbitrary functions) which states that

2
9 relu ) = -3 qf(AGJAD (loug = 11

The next example illustrates the foregoing.

Example 1.5, Let f : p —> (=2, +«] be defined by
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lfOin_lr

f(x) = 2%=1 ir ¥. > 1,
+oo 1t x < D
Let xR = 0,d = #1 and ¢ = 1/2. Then

141/2%  df0 4 & £ 1y

qf(l) =
2=1/2% A€ Lood,

and the only A for which qf{kol € Bf(lo) is Ao =1.

It might be more advantageous to work with r_ rather than dg-

. £
From the computational viewpoint, it is fairly easier to

minimize the eonvex function re on g, especially as

lim re(u) = +o
jirtrkoo
lim+ rf(uJ = fm(d}> -0

Sige;

The case where d¢ does not achieve the infimum value fé(xo;d) on
E, corresponds to the situation where q (1) > f_(d) for all

A > 0O; in terms of the function r

|

£ that means that H = O is

the unique minimum of r_ on B, . One then can be led to the

f
consideration of those Aa > 0 satisfying

ap () < £!(x_:d) + (@ > 0). (1.7)

Nhen f is a convex Lipschitz function on a Banach space (with
Lipschitz constant r > 0), one easily checks that all the A
satisfying (1.7) belong to the interval[ 3 F +ml:.

2r || + o

ns noticed above, a necessary and sufficient condition for de to
achieve its minimum on E: is to suppose that there exists

A, >0 for which qftk*) < fm{d). That is certainly true for
the d directions satisfying fm(d) = + o,
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f'(xeid)

fm(d)\

Ho

The functions in Example 1:5
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2. THE «-SUBDIFFERENTIALS OF fl + f2 AND foA.

22l let fl and f2 be two proper convex functions on X. As

indicated in the previous paragrapnh, tne description of the e-
subdifferentials of £ +f2 can be derived from the expression of

1
(fl+f2)* in terms of f; and f;. The basic assumption for that
is the following :
(HT) BTN = et Y vttt e e T v
1L, X ) = min 1 xl 2 x2 X xl x2 .

Theorem 2.1. Let fl and f2 be two proper convex functions for

which (H+} holds. Then

o L 4L ) (x ) = Lhﬂ} {a. E ey + 8 5 (x:)) 12:3)
3 G g o Es 1. D a2
£,20,;,E,70 1 2
1—- 2—
£ l+€2 = E
U
for all xo ¢ dom fl n dom f2.

Proof. As for the proofs of all chain rules in the sequel,

use the characterization given in Proposition 1.1. 0
There are various assumptions guaranteeing Uﬂﬂ which are
displayed in tne literature devoted to convex analysis. Let us
list some of them, beginning with the finite-dimensional case

X = E°.

() = ri dom'f,
relative interior; the ri requirement may be deleted for

n ri dom f2 # @, where "ri" stands for the

either index i for which fi may happen to be polyhedral;

fH;J 0O ¢ int A where

== n i == ;

1]




+ *
{HaJ for some x and some real o the set
{{ * t) * d £ x* £ }{*'H-{* f* * * *

is nonempty and bounded;
(H:) for all x the condition [f*]m(x*) + [f;]m('X*} p

A
4

1
implies T£,0, (-x") + [E0. (*7) £ O

(H;J fl is polyhedral and whenever x* satisfies EfI]m(x'
[£51,(-x") < O for [£]1_(-x") + [£31_(x") > 0 it follows thas
LEydly (5 e LEST ()
(Hg) fl and f2 are polynedral and [f *] {x ] o+ [f ] (—xﬂ, :

-

for all x .

In the infinite-dimensional setting, we have the following :
(H;) there exists x € dom f, at which f2 is finite and
continuous; |

(HBJ
compatible with the pairing), fl and f2 are in FO(X), and 0 lis

X is a Banach space (in the designated topology

in the algebraic interior of A for A as in (HE);

(H;) fl and f2 are in FO{X}, and for some open set Q in
x* the set
{x] 50 |, & dom E % 9%, € 85 f106) * E,(x) <o)
1772 i « Rt 4

is nonempty and equicontinuous;
*
HIOJ X is a Fréchet space, X its dual space, fl and f2

are in T _(X). For any continuous semi-norm p on X there exisi

a continuous semi-norm g on X such that

* * * * * *
p + {fl v fz) > fl Y {f2+q Yos
[or p ¥ (fl+f2) < fl + {fz ¥V q)ds
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+ : .
The sufficiency of conditions (HI) through {HG) are proved in

Rockafellar's book [40]; conditions (H:)- (HE} stated using the
recession functions can be seen to be the dualized versions of
the conditions contained in (HI), as shown by McLinden [32,
ps 1651. In the infinite-dimensional context, the sufficiency
of conditions (H;) through (H;) is Theorem 20 of Rockafellar's
monograph [41] where the reader will find the appropriate
references. Note that (H;) is the most widely used condition
for securing a property like (H+).

Conditions like (H;] and [Hg) are appealing because firstly
they are symmetric in fl’ f., and secondly they do not require

2

the interior of dom fl (or dom f2] to be nonempty. (H;) is a

requirement akin to the following

O € int (dom fl

- dom f2) . (2.2)
which can be found in some textbooks on convex analysis, while

(H;) reduces to (compare with (2.2)) :

O ¢ dom fl = int (dom fz). 23}

Conditions like (2.2) are considered in the recent literature
for stability questions and regularity conditions in
mathematical programming problems. In particular, when f1 and
f2 are positively homogeneous, refinements of condition (2.2)
are stated by imposing that dom fl - dom f2 is a subspace of X;
they then are "in general position" (Kutateladze's terminology
[26]1) or "transversal" (Penot's terminology [371).

Conditions (HIO) is due to Joly [24] and has a particular
flavour when fl and £, are indicator functions. Let X be a

2

Banach space and Al, A2 be two closed convex sets in X,; the

condition displayed in (HIO) can be translated by saying that
the "codistance" between Al and A2 [24, p. 437) must be
strictly positive. This condition on the codistance is

appealing by its geometrical nature (see [24] for the
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properties); it allows, as well as the other displayed

conditions, to decompose the set of r-normals to Ay n A, in
terms of ei—normals to A,.

2.2. Let f be a proper convex function on a certain locally

convex space Y (paired with a space Y*} and let A : X

» '{ ‘rﬂ'_l

a lineaqr transformation. Tnen the function g defined on X by

((foA) (x) if x ¢ dom A

g(x) = (2.4
+0 elsewhere

is a convex function and the question is how to express 9 g ip

’ : L ; * .k *
terms of 3f and the adjoint transformation A : Y —— X (Wher,

as earlier x* is paired with X). As usual in such a situatj,.
* ' = F -

it is assumed that A (and A ) is densely defined with closed

graph. The basic assumption in our context is the following:

(H?) g*(x*) = min{f*{y*}]Y*( dom A*, A*y* = x*} vx©.

Theorem 2.2. Let f be a proper convex function on Y, let

A : X —> Y be a densely defined linear operator with closed

graph. Assume that (Ha) holds for g = foA defined as in (2.4),
Then

3 (£9R) (x_) = A*Baf(Axo) (2.5)
for all X, € dom A that Axo e domf. 0
Actually, the statements of Theorem 2.2 and Theorem 2.1 are
equivalent in consideration of their contents. Indeed one can
pass from the framework "fl+f2" to the framework "Fe°A" and vice .
versa by simple transformations. For example, in [41] the

framework "Fe°A" is considered first and the results on "fl+f2"
are derived afterwards. Therefore it is not surprising to find
as conditions ensuring (Ha) a list of conditions (Hi) merely

corresponding to the (HI}. We do not consider to list all the
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EH?} since they can be picked from [40] and [41. TheoFem 191].
We shall be content with mentioning the most significative ones.

In the finite-dimensional case :

.H?; there exists x such that Ax ¢ ri(dom f);

:HgJ f is polyhedral and there exists x and such that
AX . domf. As for the infinite-dimensional setting :

{ng there exists x ¢ dom A such that f is finite and

continuous at A;::

(H:J X and Y are Banach spaces, f ¢ FD(Y) and O lies in the
algebraic interior of (dom f - range A).
A further assumption, suitable for applications to abstract
control problems, may be found in [461].

Remark 1. Along the same lines, a formula generalizing (2.1)
can be derived for the "continuous" case, i.e. for the

Jf,du : x € X fft(x)du(t) (1431 [15] (16, §41.
i T

as for integral functionals

If : X € L — fft(x[t)}du(t) (see pages 58 to 64 in [411). 0
d

Remark 2. We do not claim any novelty in producing formulas

continuous sum

for the e-subdifferential of fl + f2 and f oA, The expression
of BE(f1+fZJ under the assumptions (HI) or (H;) was used by the
author in [14]), [15] and [16]); for finite functions, it was
rediscovered in [11]. Anyway, the two quoted formulas were
likely to be known by those who are familiar with convex 0

analysis.

2.3. Some Examples of Applications. The next examples illustrate

the utilization of chain rules (2.1) and (2.5).
Example 2.1. Let f ¢ FO(X), let X, € dom f and let d be a
non null direction. Suppose, for example, that either
. X = En, f is polyhedral and (xo+Ed] n dom £ # @,
or -
v Ko P (x_*Ed) n ri (dom £) # @,
or

Il

. £ is finite and continuous at some point of (xo+Ed).
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Then the function f d ¢ A+ f(x +Ad) has its ¢-
X _ ¥ o

5 : 8]
subdifferential at A (wnere it is finite) given as

aafxord(lo} & <a€f(xo+lod}' _— (2.¢,

This is obtained by just applying Theorem 2.2. to f and
A H )l. — .}I.d -

Example 2.2. Let f be a proper convex function on X, and

consider the problem of finding an approximate minimum of £ owve.

a nonempty convex subset C. More precisely, given =, we are
looking for Bis & C n dom f satisfying
CAx.) = dnt L{x) +.ea (2.7
0 —
¥eC

The proolem is the same as finding the e-minima of
x+— f(x) + 6(x|C) over X, and its solutions are the points x_

such that O ¢ BE[f+6(.|C)] (xo). Theorem 2.1 gives sufficient
conditions for the latter relation to be expressible as

0 « L_z/ {BE f(xo) + NE (C;xol}. (23
1 2
ElrEziO
+ =

€,te,=¢
This condition means that, for some positive €17 €, With
El+ 52 = £, tnere is an element % e f(x_) such that -x* is

F_l o

an Ez-normal to C at X, The condition can be simplified if
x_ 1s the apex of a convex cone, so that N (C;x ) = N(C;x_)
o €5 o o
for all €, (see Example 1.1). when C is represented as an

inequality constaint, i.e.

g = {x e X|lgix] <0} .
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it is natural to try to express NE(C;xO) in terms of agg(xo).
Unlike the case ¢ = 0, one cannot restrict to those X lying
on the boundary of C and one cannot invoke cone properties of
NE(C;xO). The comparison result, generalizing what is known
for € = 0, is displayed in [43]. We now illustrate relation

(2.8) in a situation particularly relevant for problems of
best approximation [20,28]. Let f ¢ FO(X) be continuous at

least at one point of its domain and let V be a linear subspace

of V, of dimension n. We assume that

int(dom £) n V # @,

and we consider the x ¢ V minimizing f over V within € (relation
£2.7) )% Then, a generalization of what is derived when € = O
[28, §8] 1is the following : a necessary and suffictitent condition
for x eV to be an e-minimum of f over V is that there exists

r (>1) extreme points XI,-..,X; of BEf(xo), s extremal

directions dl""'ds of BEf(xo), with r+s < n+l, and positive

r
Ol'""Qr'gl"'°'05'i£lpi = 1 such that

S
* af
p %X + Y gpdy € V" o 0
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7
3. THE ¢-SUBDIFFERENTIAL OF fl v f2
3.1. Given two proper functions fl' f2 one defines a new

function in the following way:

g(x) = inf {fl(xl) + f2(x2}}.
xl,xzex

xl+x2=x

g is said to be the infimal convolution of £f and £ , and we

1 2
shall uce the notation g = fl v f2. The infimal convolution ig
said to be exact at xs xé + % if one has
fl{xé) + fz(xg) = min {fl(u) - fz(v)}.
u,veX
u+v=x
o)

Assumption (H+) was merely requiring that (£l+f2)* = fI v f;
with the infimal convolution exact on X . As a general rule,

*
(fl v fz) - f; + f; so that the operations "+" and "V" are

dual to each other with respect to the conjugacy operation.
The description of as(fl v f2) at a point where the infimal

convolution is finite and exact does not reguire any condition.

2
Theorem 3.1l. Let fl' f2 be proper functions, let Xq = xéﬂ%

be a point where the infimal convolution is finite and exact.
Then

. " , L. . 2 .
dt{flVf2)(xO) = \m_// [ay fl(xo)ndb fz(xo)}. (3.1)

£ io r E 2i0 1 2

— +- -
Ll E_2 £
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Conditions ensuring that the infimal convolution is exact at all
x, dom (fl v f2} are "dual" to those ensuring (H+]. As for
example, the following hypotheses secure the exactness and the
' , 5. B .

resulting fl Y f2 in O{X).

vV

H
( I) fl'fz

ri requirement may be deleted for either index i for which fi

rotﬁ“) and ri(dom £,) n ri(dom f£,) # @; the

may happen to be polyhedral;

v I
(Hg) fl, f2 € FO{X) and there is x ¢ dom f

is finite and continuous.

* ) *
1 at which f2

Remark. A formula generalizing (3.1) to some extent can

be produced for the continuous infimal convolution

f ft dp: x —- inf{fft(x(t}}du(t) fx(t)du(t) = x};
H - *

for such purposes, see [21], [47], [41, p. 631, [16 Chapter 41].

3.2. Applications. Let here X be a real Banach space E and let

f be a proper convex function on E. Performing the infimal

convolution of f with another "regular" function yields a

$moothing" or "regularizing" effect , as is wusual with
operations of the "convolution" type. If ||.|| denotes the norm
(function) and r a positive constant, the function f = fvr|| .||

does have some interesting properties which are described in
detail in(19, §31]. In particular, it is noteworthy that fr is
either identically equal to -« or is Lipschitz (on all of E)
with Lipschitz constant r. The coincidence set of f and

fr' i.e. the set 0of x ¢ E for which f(x) = fr{x), can be fully
described and for all X where f and fr coincide, the following

holds:

* *
8 £ (x)) = {x" & 3 £ (x,) | Hx ., < xl; £3:2)
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where || .||, denotes the dual norm [19, Proposition 2.3]. We
now turn our attention to a particular case of the above

regularization and to another regularization process.

Example 3.1. Let S be a nonempty closed set of E, differen:

from E. Since the distance function dS is unable to make a
distinction between int S and bd S (the boundary of S), we

introduced in [18] the following function :

bg(x) = dgx) - @ (x),

where Sc stands for the complementary set of S in E. Actually,

Ag is nothing more than a regularized version of the following

convex function pg(Ag = lg vyl -]

U (X) = 4o if X € Sc, -a . (x) 1T % ¢ S
S SC

Properties of Hg and A_, from the convex analysis viewpoint are

S
displayed in [18]. Concerning the e-subdifferential, we
observe that the infimal convolution of ug and || .|| is exact a
X.. ™ E, + 0O for all X, e 5 Thus, according to (3.2), one has

o)
that

* * 5
Vox_ e 5 BE ﬂs(xo} = {xl € aauS(xO]l || x H* < L},

Example 3.2. Let H be a Hilbert space and let f ¢ FO(H].

Another regularizing process which is widely used in nonlinear

analysis consists in taking for any r > O,

¢r is everywhere finite on H and the unique point X, where the

2
function u+—+ f(u) + r || u-x|| achieves its minimum is
2
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%, = proxf/r(x);

the "proximal point of x relatively to %" [34]. The optimality

condition yields that r{x*xr) € af(xr), which can be rewritten

as =3

1

X (X)) =

- 1 -
r—(I+}'af)

The mapping (I + % af)

of atf 151. ¢r is known to be C
and its gradient mapping is Lipschitz) with v¢r(x)
(e Bf(xr)). As for the e-subdifferential of ¢_, we easily

deduce from the rule (3.1) and from the e-subdifferential of

2
£l .1l that

2
R B kh,// [381 £(x ) n [r(x-x) + /2r ¢, B]] :

El'€2io
el+32=e

. is the so-called "resolvant mapping"
Lol pie, $_ is differentiable
= r{x—xr)

where B is the closed unit ball in H.
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4. THE e-SUBDIFFERENTIAL OF max fi
iel

4.1, Let {fi|ieI} be a collection of proper convex functions

ana. st £ = max fi. It is known that, under suitable
lel {
assumptions, any subgradient of f at X, can be expressed as j;
convex combination of subgradients at X of those fi which
satisfy fi(xo) = f(xOJ. The situation is different for tne
e—differential; due to its non-local nature, the knowledge g+

BE f(xo} requires a priori the knowledge of aa fi(xo) £E6E gl

. *
dels The calculation of the conjugate function f in terms -
f; is not without trouble; for more convenience we shall dea]
with the case where I is a finite index set {1,...,m}.

Theorem 4.1. Let fl,...,fm be convex functions finite on +:.

entire space X, and suppose that all of them except, possibly,

one are continuous. Then x* € aaf(xO] if and only if there

exist vectors x;, i=1,...,m non-negative ai,i R T |

adding up to 1, and non-negative ei,i=l,...,m, such that

aifi(xo) = £ ,

*
(c) X; € 0 f.(xo) for all i such that ay > 0.

e, 1
—
)
T
. * *
Proof. Under the above assumptions, for every x ¢ dom f ,

there exist vectors x; ¢ dom fI, i=l,...,m, and positive

Ny i=l,...,m, adding up to 1 such that
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m
£ x"y = 7 a £ (%0,
=1 e |
. - *
x = Y a, x, (see [2l;p.66] or [23,;p.1781).
=1 * ¢
* Z " * * +*
‘3 f{xo} is known to satisfy f (x ) + f(xo) - {xo'x ¥ B

his relation can pbe rewritten through the above-mentioned

elation as
m
)< g # E
i=1l

*

* *
ai[fi(xi) + fi(xo} - <xo:xl

i

aifi(xo} - f(xo).

te=18

i

This inequality is equivalent to the existence of non-negative

i=1,...,m satisfying

Fir
) T
| } €. =¢ + g.f. % J = £{x. ),
Ll <} joy 1.4i% 0 o
f*{ *) + £.(x ) - < s ‘i for all i such that a,>0
i 1.6 e i
whence we derive the desired result. 0

In a set-formulation, the result of Theorem 4.1 can be rephrased

as

m m

d f = . = 1,'. .>0.r
. Ex)) {i£1 3 _(a;f.)(x ) |a; > O, izl oy £y >
(4.1)

e; + f{xD) -

. f. (x) =&l
1 5 i 1 (@]

Il ~=3
le~13

2! i

a formula announced by Kutateladze [27].
Remark. When I is an arbitrary index set and fi € FO(En) for

all icrI, a formula giving (sup fi}* does exist [40, Theorem 16.5].
iel

67



The problem however is to give sufficient conditions ensur)
that

m W, . 2 *
() (sup f,) (x) = min{ ) o £, (%))

icl el

where for each x* the (attained) infimum is taken over all

representations of x"as a convex combination b qix;. Moredy:
iel

it is known that the infimum can be taken over all expression:

of x as a convex combination in which at most n+l of the

coefficients a, are positive and the corresponding xI are

affinely independent [40, Corollary 17.1.3]. Usual conditions

ensuring (HmJ require some additional assumptions on I (I
compact space) and on the mappings i —» fi{x) (upper-
semicontinuity); for a generalization of formula (4.1) in such

a case, see [43].

4.2. The result of Theorem 4.1 is of importance for theoretical

considerations as well as from the computational viewpoint.
We illustrate its wide range of applicability by two examples.

Example 4.1. Let g : X —+ R be a convex function and

consider the function g+(g+ = max(0,qg)). What is the exact
expression of BEg+ in terms of 3ng? According to formula (4.1},
we have that

2,97 (%) = (3 (ag) (x,) [02a<1,n20,n+g" (x ) = ag(x,) = =},
For each a ¢ (0,11, let n{a) = ¢ *g+(xoj + a g(xo}; then
aEg+[xO} = k_J) Bn[a}(ug}(xo}, (4.2)
o<a<l
with the convention that an{ag)(xo} is empty whenever n < 0. [
Example 4.2, Let a;,...,a; be in Xf let él....,cm be real
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wWe set f(x) = max (<a;,x}+c.). Then one easily
i=l;-‘a|m 1

numbers.

checks that

I aal 7
9 fix. ) 4 Jy aga |e; > 9, a, =1,
E o 23 i 1 1 e i
x *
£(x ) - i£l ag(<a,x > + cy) < e}, (4.3)

When f is the maximum of a finite number of guadratic functions,
the formula giving exactly BE f(xD} is derived from (4.1) and

results in Example 1.4. 0
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5. THE e-SUBDIFFERENENTIAL OF oeof

Let £ : X —» (-», +»] be a proper convex function and let
g : F —> (-», +»] be an increasing convex function. By posir.
o (+») = 4=, we get a new convex function oc°f : X » (=w, +n],

The question in this section is to give the exact formulation

of BE(UGf} in terms of BEG[f(xo}] and aq f(xo).

We first note that BEc(tD) C E+ for all to e dom g. A

general ( usable) result is hopeless without any assumption on
the overlapping of f(dom f) and dom o. The following (mild)

assumption will be made (Kutateladze [25], [26, 33.71) :

(H°) f(dom f) n int (dom o) # @.

Theorem 5.1. Let - 3 be such that f(xo} ¢e dom O. Taen

x* € BE(caf] (xo) if and only if there exist non-negative Eqr

and 1:1'r such that

€2
(a) E, + €, = €,

tb) t* « 3, olE(x)]1, el 3, (t*f){xol. ]

1 2

Proof. Under the assumption {HOJ, the following holds
(Kutateladze (251, [26, §3.71)

(Uof)*(x*) = min(t*f]*{x*} - c*(t*}it*i 0}
Let %" e BE(oof)(xO]; then there exists t* > 0 such that

{t*f}*(x*} - c*(t*) + G[f{xo)] - c:xo,x*:- < £
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which can be rewritten as

- st (th) + o[f{xO)] - t*f{xD) X E.
Whence the announced result is easily derived. 0

The result of Theorem 5.1 can be simplified when o is positively
homogeneous (see Example 1.1). As for example, if o : t b—> tﬁ
one extends formula (4.2) to arbitrary convex functions f.
Another application worthwhile mentioning is now displayed.

iet f be a proper convex function on X and let C be defined as
C = {xeX|g(x) < 0},

where g is a finite convex function. We consider the problem
of characterizing the e-minima of £ over C (see Example 2.2).

By setting o(t) = 0 if t < O, +» elsewhere, the above problem is
equivalent to finding the e-minima of x +—— f(x) + (o0°qg) (x)

over X, and its solutions are thus the points xo satisfying

0 « 36(f+cog)(xoj.

We suppose that

. there exists a point of C where f is finite and
(H) continuous,
. there is xe¢C such that g(x) < O.

Observe that the latter assumption is nothing more than (HO)
for the particular invoked o. For such a o, we clearly have
that

kg +*
aﬂ olg(x )1 = {t > O|n+t g(xD) > 0} ¥ x_eC.

Hence a straightforward application of Theorem 2.1 and Theorem
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5.1 yields :
Theorem 5.2, Under the assumption (H), a necessary and

sufficient condition for X, ¢ C to be an e-minimum of f over ¢

is there exist non-negative E1r Egr €4 adding up to £ and a

non-negative £* satisfying

*
(@) 0ed, Eix) +3. (E79)(K)

(b) Eq + t*g{xo) > 0.

3

The above result was announced by Kutateladze [27] in a setting
dealing with convex operators, and proved by Strodiot et al (43}

through a different approach.
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| 6. THE ¢ -SUBDIFFERENTIAL OF A MAGINAL FUNCTION

Let £ : X x Y —» (-», +»] be a proper convex function, where as
3 * - -

" usual X is paired with x* and Y with Y. The marginal funetion

¢ is defined on X by

$(x) = inf £(x,Y). (6.1)
ve¥

For all Xq such that ¢(x0} e ¥, let M(xol denote the set of
elements (if any) for which the infimum in (6.1l) is attained.

1 i M(xo} is non-empty, it comes from the e-subgradient inequality
that

3. ¢(x)) = {x"ex" | (x",00e 3_ £(x,0¥,)) (6.2)

;for all yo € M{xol.

. Let us particularize the result (6.2) in the case where the
2 marginal function is defined at x through y constrained to a
g set F(x). Let thus F : X TY be a set-valued mapping whose

i graph {(x,y) ¢ XxY|yeF(x)} is denoted by F, and let dp defined
. as

(x) = inf Elx, v}
yeF(x)

We denote MF{xO} the set of ¥, ! F(xo) for which

¢F(xo) = f{xo.yo

the e=subdifferential of ¢F'

) s The next result gives the description of

Theorem 6.1. Let f be a proper convex function on XxY, let

F: X=—* Y be a set-valued mapping with a nonempty convex graph

F Assume moreover that there is a point in F at which f is

finite and continuous. At a point xpo where ¢y is finite and Mp(x,)
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non-empty, let us choose any y in MF(xo): then we have the

: * ; —_—
following : x ¢ aE¢F(x0] if and only if there exist -
adding up to € such that

3T P

-
(i ,0) & BE f(xo,yo) + NE (F:(XO:YO))-

1 2
Proof. Since §(y|F(x)) = §((x,y)|F), ¢ can be rewritten ;
¢o(x) = inflf+6 (.|F)] (x,¥).
yeY

According to (6.2)), we have that

* *
BE¢F(XO) = {x [(x ,0) ¢ 35[f+5(-1F)1 (x ¥ )}

whatever Y, € MF(xo). Theorem 2.1 applied under the

assumption (H;) thus yields the announced result.

As an illustration, let f be dependent on the only wvariable y
and let F : x=2=F(x) = {y ¢ Y|Ay = x}, where A : ¥ » X is a
continuous linear mapping. The marginal function associated

with these data is then the so-called image of f under A,
(Af) (x) = inf {f(y)|Ay = x}.

Here, the El—subdifferential at (xO,yD] Oof £ considered as a

function on XxY is {0O}x aEl f(yo}, while NEZ (F;{xo,yol}cMEs

not depend on €., and is reduced toO

2

{(x*, - A"x™) [ x & X .

Consequently, the result of Theorem 6.1 is rewritten as

* *
3_(A£) (x,) = (x"|A X" e 3, £y )}, (6.5

where y, satisfies Ay, = x5 and (Af) (x5) = f(yg)
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Remark. The calculus rule (6.4) is a general result which
can be proved in different ways. Actually, results (6.2) and
(6.4) are of an equivalent nature since one can pass from one
framework to the other one by simple transformations.
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7. LOCAL BEHAVIOUR OF THE ¢-SUBDIFFERENTIAL

Throughout this section, X = E is a Banach space (pairad 4.
x* = EY+ topological dual space of E) and f - I (E).  We
denote by B (resp. B*} the closed unit ball in E (resp. in

In this section we are interested in the local properties -«

39 £(.) : dom f x E+ —_— Cd[E )

(x,0) =2 a_ f(x),

where CG(E'} denotes the collection of all o(E',E)~-closed

subsets of E'. When x ¢ int(dom f), BF £ix) is, for any
£ € H+,
B We recall that the Hausdorff-topology on the collectis-

a non-empty o (E',E)-closed bounded (convex) subset

C[j b(E'] of all non-empty o(E',E)-closed bounded convex subss.

r

*
of E' is the topology in which, for each C « Co b[E‘}, the =

r

of the form

* *

{p* ¢ ¢, L (E)|D'c c” + aB” and c* < D" + aB"}
r

constitute a fundamental system of neighborhoods of c* as

ranges over E:. The Hausdorff-topology on CU (E') can be

b
r
defined by a metric (the so-called Hausdorff-distance h) whos:

definition in a dual way is as follows :

*

vecy b c ,(E') h(cT,DY) =sup |§%(a|c*) - s¥(a|p")
&r d«B

7.1 Behaviour of aF f(xo) as a Function of . Evidently,

ar f{xo) decreases as £ decreases to 0, and the intersection

the nest Brf(xo} is justaf(gol. The rate of convergence of 3 f
E
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towsrds #f (x_ ) when ¢ goes to o' may be very bad; see for
geample the case of guadratic functions in finite dimensions

(rf. Example 1.4) where h(Af{xo), d¢ f{xo)} behaves as €*.
Cven more, when E is not finite-dimensional, it is not certain

that for all # > O, there exists a > O such that

¥e 00,0l , 3_ £(x ) c Af(x ) + S8, £7.1)

The next statement, due to Robert [39, Part I] gives conditions
for an approximation result like (7.1l) to hold. For the rest

of this section, we shall assume that there is a non-empty open
eed on whieh f 18 bounded above.

Theorem 7.1. Let xo lie in the interior of dom f. The

following assertions are equivalent

(a)  f(x,+ h) = £(x,) + £'(x_jh) + e(h)|| h|, with

lim € (h) = 0O;
h+o

(b) [f(xo+ld} - f{xo)]l_l converges to f'(xo;d) uniformly

in d ¢ B when A ~» O+ F
(c) for all 6 > O, there exists a > O such that
Ve <lO,al , ?_f(x ) c 3f(x ) + §B*;

(4d) for all 6§ > O, there is a neighborhood V of X such

that ¥x ¢ V, 3f(x)  3f(x]) + s . O

f is said to be Fréchet-subdifferentiable at those points where
one ©of the above equivalent conditions is satisfied. The
discrepancy which may occur between the convergence of

[£(x +)d) - £(x_)12"" to £'(x_;d) for each d and uniformly in
B is of the same nature as the difference between Hadamard-
differentiability and Fréchet-differentiability. According to
Robert's result, the rate of convergence of aEf(xo) towards
af(xo) is closely related to the rate of approximation of
E'(x,:d) by [£(x_+Ad) - f(xoﬂl_l. Actually, in proving the
aguivalence of (b) and (c¢), Robert showed the following
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relationship. Let 6 > 0; if (b) is assumed, there exists
10 > 0 such that

o :
YA e]O,hD], ¥d ¢ B, [f{x0+kd}-f{x0)]l 5 f'(xoid} ¥ 0/2,

Then, a = (6Ao)/2 satisfies the requirement of (c¢). wWhen ¢ an4

e 1ie in E:, the Hausdorff-distance between 3 f{xo) and

as,f(xo) is estimated in the following manner (19, Theorem 3.3],

—

Theorem 7.2. Let xoeint(dom i il Then for all >0 there

exists k such that

k

min(e,e"')

|e=€" {7.2; {

h(asf(xo), BE,f(xo}) <

for all e; &' in 10,el.

7.2. Behaviour of agf(x] as a function of x. Let us begin by

noting two properties. Pirstlyy let rg(arf) denote (for =>0)

the range of aef, i.e.

rg(a 6) = J o f.

xedom £

It is a mere consequence of the approximation result of
Brgndsted and Rockafellar [7]1 that the closure of rg(3 f) in E'
£

is independent of £, namely

ek rg{arf) = cl rg(af)

for all e>0. Secondly, due to the fact that f is locally
Lipschitz on int(dom £), for all xoaint(dom f) there is a

neighborhood V of X such that "/ 9 f(x) is a bounded set of
X v E

Er. The main result concerning the behaviour of 3 f(.) is the
E

following one [19, Corollary 3.41.
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o

Thecrem 7.3. Let x_c<int(dom f), let £>0, Then there exists
of and a positive k such that

& mneighborhood V of xo

hiz f(x), 3_ £(x"')) < ?H x=x"'| (7.3)

for all x, x' in V.

e
= ince

h{a f(x), 3 f(x')) = sup|£f'(x;d) - £'(x';d)|,
£ de<B £ E

f'(x;d) is, for each d<E, a locally Lipschitz function as a
function of x. A natural question which arises now is :

the (usual) directional derivative of f;(.;d] exist?
This guestion was answered recently by Lemaréchal and Nurminskii
{31) in a particular setting. We shall recall the statement of
their result and provide an interpretation of it as well as some
corollaries. Let f : B —» F be a convex function and suppose
that £ 1o fintte everywhere. This assumption is known to be

equivalent to
£ . (d) = += for all 4 # O.

In Rockafellar's terminology, such a function is called co-
finite [40, p.l16]. If f is co-finite, the same obviously

holds true for f . As already seen, the support function
f:txo;d) in the d direction of 3; f(xo} is the optimal value of

Irmax<x*,d>
(P)

£7(x") + £(x.) = <x_,x"> - 20,

* .
The assumption that f 1is finite everywhere is a technical one
to ensure that the function defining the constraint set in (P)
is finite everywhere. We note incidently that this assumption

implies that
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af(xo} c int(BEf(xo))

for all xoe En. Let now xorﬂn, £>0 and d#0 be fixed. A fur:
consequence of having £ co-finite is that

Md(on = {uocE+]rf(uO) = min rf(u)}
urE+

. " * I
is a (nonempty) compact interval of F_r which turns out to

equal

{l/ko|qf(loj = Tin* qf(hi}
ek

(see Propositions 1.3 and 1.4 in §1). The Kuhn-Tucker

coefficients My for the program (P) are those satisfying

lr-=:x*,d> = fé(xo:d}

—deuo(af*(x*}—xoj.

1
-

*
Since u0>0, the latter relation can be rewritten as x eaf(xdh

Lemaréchal and Nurminskii [31] showed that the above
coefficients W, were just the o defined in (7.4). Now, their
main result comes as follows

Theorem 7.4. For a given direction §, the differential

i -1 = g i
quotient [fé(xo+sa;d] - fé(xo;d}] S has a limit fé(xo,d,ﬂ.
and

* =
f"(xo;d,ﬁj = min max ful<x ,6>—f'(xo;b}]},

£ *

ueMd(xO} X EBEf(xD)d
- . = (?"P
o *_ * = 1 .
where Bﬂf{xo}d = {x ﬁBEf(xO}|<x ,d> = fc{xo'd)}' Moreover,

the operations "max" and "min" can commute in (7.6).
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We interpret formula (7.6) as a sensitivity result for the
nathematical program (P). Indeed, f:{xo;d) is the optimal
salue of program (P) while f;(x0+s£;d) is the optimal value of

maxﬁx*,d>
{Psl

f*(x*}+f{xo+56) = ﬂxo+sé,x*> =: £%0.

"he difference between (P) and (PS) lies in the definition of
‘he constraint set. Actually, (PS] can be viewed as a
serturbed version of (P). Let x be a solution of (PS), Looe

:*ﬁarf{x0+56] we clearly have

d?

f*{x*}+f{XoJ-<xorX*>-EiS & max <x*.6>-f'{x :8)
X cd £(x +86) 2
£ o) d

; oo ue (7.7)
|

O that

£!(x *+s6;d) < max <x*,d> (7.8)

* +
Al i
S

|

+ .
here Cs is (for all s>0 ) the constraint set defined in (7.7.)
ue to the upper-semicontinuity of the set-valued mapping

#:IBE f(xo+56)d, the expression occuring in the right-hand
ide of inequality (7.7) is " approximately " s.u. with

u = max [<x*,6>-f'(xo;d)]- (7.9)

*
e Ir'astf(}{c:)cl

max <x*,d>, we have that

* _+
X e
O

low, since f'(xo;d)
£
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. =F 1 &
f;(x0+sﬁ,d) fF(xO,d)

s — w  ar * 4

One could operate in a similar way to obtain a lower bound
£/ (x,*+s6;d) of the form max_ <x”,d>, 'where C, is a constr:
X sz

set akin to (C;) in its definition. Now, due to the
interpretation of the set of Kuhn-Tucker coefficients in terae
a marginal function associated with perturbed versions of
one can interpret f;(xo;d,a) (through (7.10)+ and a companior
inequality (7.10) ) as the support function (except for the

sign) of Md{xo) in the direction u defined in (7.9).

Comment. As indicated earlier, Theorem 7.4 was proved by
Lemaréchal and Nurminskii under the assumption that f (is
finite and) has an everywhere finite conjugate function b
Under the only assumption that f is a finite convex functian,
the same formula (7.6) has been proved very recently by
Auslender [11.

We now turn our attention to particular situations where the
formulation of f:(xo;d,ﬁj can be reduced to simpler expressions,
The next corollaries can be viewed as complements to works
[31] .and [11.

Let v_ denote the function X —> v () = £V {xza}.
e,d S £

According to Theorem 7.4, Ve oq admits a directional derivative
r

6 +—r v; d(xo;ﬁ} at those points X where it is differentiable,
r

Firstly, suppose that 6§ satisfies the following assumption:

(Ad] the linear form x* — <x*,6> is constant on atfh%h.

This assumption merely says that the width of a_ f(x,)4q 1n the
direction ¢ is null, or equivalently that § belongs to the
orthogonal subspace to the affine hull of 3. f(xp)g- Clearly,
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+F) is among the & satisfying (hd). For those

lirections ¢ such that [Ad} holds, we have that

P AL Ei?x }{ulq_f'(xo;AJJ} ' .
u 4 o
where n is the constant <a£f(xo)d:6> : In particular, (Ad)

is satisfied by all directions § whenever aE f(xo)d is reduced

*
to cne element X3 - In such a case,

6 —+ v' _(x 3;6) = min {ul<xt,8>=£'(x 38)1)
£.d d o)
. ueMd(Xo)

is a coneave function, so that . is quasi-differentiable
r
at xo in Pshenichnyi's sense [38, Chapter 3]. We therefore

have:
Corollary 7.5. Let X and d be such that aEf(ond is reduced

to a single element x;. Then = is quasi-differentiable at
r

x_ and i=-di i X - =
» the gquasi-differential 3 (=¥, d(xo) of =v_ -4 at X,

r
is given as

* *
a ( vg'd)(xo) = Mdfxol [Bf(xo) - xd] : {Fld)
Proof. 3*(‘VE 4) (X)) is defined as the set of x satisfying
r

<x",8> < - v'_ J(x_;8) = max (WLE' (x_;8) - <x3,8>1)
I

ueMd(xo)

for all 6. Consequently, due to the expression for the
subdifferential of a maximum of convex functions (see for

example [28, p. 355]), we have that

3*{-VE g) ¢%;) = eol kh_f/) pn(af(x.) - x;)}
r @]
uEMd(xo)
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But since Md(xo) does not contain negative elements, the ahgy

. - *
set is nothing else than Md(xo) tdf{xol xdl.

Since Ve 4 is a locally Lipschitz function, it has a qgenerali;
r
n

gradient av‘ 4 in Clarke's sense [10] at all % R What is
r

the cxact evaluation of 9v d{xo)? The expression for v
r

4
as well as consequences of it are given in [1]in the canec

where M, (x) 18 single-valued in a neighborhood of £ The

d
result described in Corollary 7.5 suggests instead to look a+
the counterpart situation, namely when n.f(x)d,k,;ﬁng;ﬁ_,v;“

in a netghborhood of X We than have the following result :

Corollary 7.6. Suppose Bff(x)d is single-valued in a

neighborhood of X e Then

* L * U,
oV _ d(xo} = =3 (_vﬁ,d)(xo) = Md(xo)[xd f(xo)], (232

- F

*
where X3q stands for aﬁf(xo}d.

Proof. At a point x around X where v_ a is differentiable,
S

both Vc,d and -v_ 4 are quasi-differentiable with

*
Vv, q(x) = "3*"Vc,d) (x) = {Vv, 4(x)}.

Therefore, a mere consequence of (7.11) is that

[ both M;(x) and 3f (x) are
v is differentiable at x <=> :
£,d single-valued at x.
Thus, again from (7.11l), at all xi(nna neighborhood of xo)

where v is differentiable, we have that

,d
| *
va’d (xi} = ud{xi}[xd(xi) - ?f(xi}].

Now, the mapping which assigns to x the unique element x;(x) of
of BEf(de is continuous (since, as a general rule, the set- |

valued mapping xh::BEf{de is upper-semicontinuous). Similarm@
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Similarly, the upper-semicontinuity of the set-valued mapping
11::3«5&{;\(] (see [31] or (1] ) makes that lim supfud[x'i)}'--r-'ld{xo].

Hence the result (7.12) is easily derived. = O
There is a situation where the assumption of the above corollary
is automatically satisfied around any X in En, that is when
£ is differentiable on all of & . The precise statement is
as follows :

Corollary 7.7. Let f be differentiable on E".  Then,

= i ——

for all x ¢ F

av_ q(x) = M, (x) [x;{xj - VE(x)1, (7.13)

where xd{x} is the unique element of aaf{x}d' g

Proof. Since f is differentiable, f* is strictly convex on
Entdo, Ps 253]. Therefore, the program (P) whose constraint
set is defined through f* has only one solution x;. g
If £f is strictly convex, Md{x} is single-valued for all x (see
for example [31] or [11). Thus, as a by-product of (7.13), we
Obtain the following "global" statement already observed in [11].

Corollary 7.8. Suppose that f is differentiable and

Strictly convex on E. Then v

is continuously

E,d

differentiable and

?va,d{X} = ud{x}[xd(x} - f(x)] (7.14)

E'I

oy all . k.

Since the "strict convexity" and the "differentiability" are
dual properties [40, Section 26), if f is differentiable and
strictly convex, the same holds for £*. The correspondence
between f and f* is precisely the Legendre transform [40,
Theorem 26.6]; it would be worth getting a better insight into

the relationship of v (associated with f) with the

£,d

corresponding V. 4 associated with f*. A(rather trival)
- 7
illustration of (7.14) is in considering the example of

gquadratic functions (see Example 1.4). In such a case, the
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; * i
unique xd(xol of aEf(ond is
LS2
*

- 2¢
xd(xo} = Axo+b+ [m] Ad,

( 1/2
E _ |<Ad,d>
while Md (xO} is reduced to ud(xo} l——iz-——) p

Consequently, we have that

f;(xo:d,é} = <Ad, 6>

whatever € > 0. Of course, the result could have been obtaines

at once from the expression for fé(x;d). Nevertheless, this
example shows a noteworthy feature (refer to (7.14)): when
0", then w4 (x) » += while [x4(x) - VE(x)] —> 0. So,
even in the situation of Corollary 7.8, the behaviour of
VVE,G(X) could be wild when e+0".
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8. CONCLUSION

in this paper, we reviewed the main properties and calculus
rules of the t¢-subdifferential of a convex function. The
gefinition of aEf was peculiar to convex functions and all the
saterial related to it heavily rested on tools from convex
analysis. Actually, another definition was proposed by
Taylor [44, p, 745] but for different purposes. For a class
of functions close to that of convex functions, the so-called
weakly convex functions, Nurminskii and Zhelikhowvski [36]
proposed a concept of e-quasigradient and gave an iterative
procedure for the minimization of weakly convex functions,
formulated in terms of e-quasi-gradients. In the locally
Lipschitz case, the only concept of e-generalized gradient we
are aware of is the one given by Goldstein [13]. However his
definition is a local one and cannot reduce for convex
functions to the one used in this study.

As for the function (d,68) — f;(xo;d,fﬁ}, it is not clear
whether it could be of some help for defining a generalized
dessian matrix for convex functions. Introducing such an
object, tractable from the computational viewpoint, is of main

concern in the current research in convex analysis.
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