Recognising Multidimensional Euclidean Preferences

Dominik Peters

Department of Computer Science University of Oxford

COMSOC - 22 June 2016

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Let $d \ge 1$ be an integer, let V be a finite set of voters, let A be a finite set of alternatives.

Definition of *d*-Euclidean preferences

A preference profile $(\succeq_i)_{i \in V}$ of linear orders is called *d*-**Euclidean** if there exists a map $x : V \cup A \to \mathbb{R}^d$ such that

$$a\succ_v b\iff \|x(v)-x(a)\|<\|x(v)-x(b)\|$$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

for all $v \in V$ and all $a, b \in A$.

Here,
$$\|(x_1, \ldots, x_d)\| = \|(x_1, \ldots, x_d)\|_2 = \sqrt{x_1^2 + \cdots + x_d^2}$$
.

Euclidean Preferences: Direction of the Arrow

$$a \succ_{v} b \iff \|x(v) - x(a)\| < \|x(v) - x(b)\|$$
 (1)

$$a \succ_{v} b \implies ||x(v) - x(a)|| < ||x(v) - x(b)||$$
 (2)

$$a \succ_{v} b \iff \|x(v) - x(a)\| < \|x(v) - x(b)\|$$
 (3)

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

(This becomes more pressing when we allow ties.)

Euclidean Preferences: Direction of the Arrow

$$a \succ_{v} b \iff \|x(v) - x(a)\| < \|x(v) - x(b)\|$$
 (1)

$$a \succ_{v} b \implies ||x(v) - x(a)|| < ||x(v) - x(b)||$$
 (2)

$$a \succ_{v} b \iff ||x(v) - x(a)|| < ||x(v) - x(b)||$$
 (3)

(This becomes more pressing when we allow ties.)

(1): ties = equidistant (Bogomolnaia and Laslier 2007)
(2): my favourite; ties impose no constraints
(3): multidimensional unfolding; degeneracies

d-EUCLIDEAN

Instance: set A of alternatives, profile V of strict orders over A*Question:* is V *d*-Euclidean?

Case d = 1

For one dimension, the problem is solvable in polynomial time (Doignon and Falmagne 1994): use single-peakedness and single-crossingness to find the ordinal order of alternatives within \mathbb{R} , then use a linear program to search for the precise numbers. **Open:** can you do this without solving an LP?

Case $d \ge 2$: this paper.

Main Result

Theorem.

For each fixed $d \ge 2$, the problem *d*-EUCLIDEAN is NP-hard. More precisely, the problem is $\exists \mathbb{R}$ -complete, that is, equivalent to the *existential theory of the reals*. Thus, it is contained in PSPACE.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Formulas of the first-order theory of the reals are built from

- variable symbols x_i
- \blacksquare constant symbols 0 and 1
- addition, subtraction, multiplication symbols
- the equality (=) and inequality (<) symbols
- **Boolean connectives** (\lor, \land, \neg)
- universal and existential quantifiers (\forall, \exists)

The *theory* of the reals = all true sentences in this language. (interpreted using the obvious semantics)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The *existential theory of the reals (ETR)* consists of the true sentences of the form

 $\exists x_1 \in \mathbb{R} \ \exists x_2 \in \mathbb{R} \dots \exists x_n \in \mathbb{R} \quad F(x_1, x_2, \dots, x_n)$

with $F(x_1, x_2, \ldots, x_n)$ a quantifier-free formula.

In other words, F is a Boolean combination of equalities and inequalities of real polynomials.

Definition of $\exists \mathbb{R}$

L is in the complexity class $\exists \mathbb{R}$ if *L* is poly-time reducible to the problem of deciding whether a given sentence is in ETR (i.e., true).

d-EUCLIDEAN is contained in $\exists \mathbb{R}$ for every $d \ge 1$.

Proof.

A profile is *d*-Euclidean if and only if there **exist** reals $x_{r,i} \in \mathbb{R}$ for each $r \in A \cup V$ and $i \in [d]$ such that if $a \succeq_V b$, then

$$\sum_{i=1}^d (x_{v,i} - x_{a,i})^2 < \sum_{i=1}^d (x_{v,i} - x_{b,i})^2.$$

Thus, the problem is equivalent to asking whether a system of polynomial inequalities has a solution. This system can be constructed in polynomial time, given the profile.

"can a given combinatorial object be geometrically represented?"

- Recognising intersection graphs of
 - line segments in the plane
 - unit disk graphs
 - unit distance graphs
 - ...
- Finding Nash equilibria in a non-cooperative game

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Realisability of hyperplane arrangements

Realisability of hyperplane arrangements

Input: a set $S \subseteq \{-,+\}^n$ of sign vectors e.g., $S = \{(+,+,+,+), (-,+,+,-), (-,+,-,+), (-,-,-,-), (-,-,-,+), (-,-,-,-)\}$ **Question:** Can this be *realised* by oriented hyperplanes in \mathbb{R}^2 ?

Theorem.

For each fixed $d \ge 2$, the problem *d*-EUCLIDEAN is $\exists \mathbb{R}$ -complete.

Theorem.

Recognising *d*-Euclidean preferences is $\exists \mathbb{R}$ -complete even for dichotomous preferences.

Theorem.

Recognising *d*-Dichotomous-Uniform-Euclidean (*d*-DUE) preferences is $\exists \mathbb{R}$ -complete. *(see Elkind and Lackner 2015)*

Some domain restrictions can be characterised by a finite list of *forbidden subprofiles*.

e.g., a profile is single-peaked iff it does not contain any of

V1	V2	V3	V1	V2	V3	<i>v</i> ₁	<i>v</i> ₂	v_1	<i>v</i> ₂	-	v_1	<i>v</i> ₂
	- <u>-</u>			-2		d	d	d	с		а	с
d	D	C	d	C	d	а	с	а	d		d	d
D	С	a	D	D	C ,	Ь	b	b	Ь		b	Ь
С	а	b	С	а	b	с	а	с	а		с	а

(Ballester and Haeringer 2011)

Forbidden Subprofiles: Single-Crossing

а	pr	ofi	le is	5 S	in	gle	-cro	SS	in	g	iff i	it d	oe	es i	not	С	on	nta	ain	а	ny	<u>c</u>	of		_	
	1/2	1/3		<i>v</i> ₁	V2	V3		v_1	V_2	v ₃		<i>v</i> ₁	<i>V</i> 2	V3			<i>v</i> 1	v_2	V3			v_1	<i>v</i> ₂	V3		
a	b	c a		a b	b a	d a		a b	c a	c b		a b	d b	d c			a b	c b	d a			a b	a d	c d		
	а	b		c d	d c	b C		c d	d b	d a		c d	a c	a b		_	c d	a d	c b			c d	c b	a b	=	
V	<i>v</i> 2	<i>V</i> 3		V1	. V2	V3		<i>v</i> 1	V2	<i>V</i> 3		V1	V2	<i>V</i> 3		_	/1	V2	V3			<i>v</i> 1	V2	<i>V</i> 3	_	
a b	c b	d b		a b	b a	d a		a b	a d	b a		a b	b c	d b			a b	b d	c b			a b	a c	C a		
d	a a	c a		c d	d C	c b		c d	c b	d C		c d	a d	a C		_	d	a C	a d			c d	a b	D d	=	
	v2	<i>V</i> 3		V1	V2	V3		<i>v</i> ₁	V2	V3		<i>v</i> ₁	V2	V3			/1	v_2	<i>V</i> 3			<i>v</i> ₁	<i>v</i> ₂	<i>V</i> 3	-	
a b	b a	c d		a b	c a	c b		a b	a d	d b		a b	b c	b d			a b	a c	c b			a b	e a	e b		
c d	d c	b a		c d	d b	a d		c d	c b	c a		c d	a d	a c		_	c d	d b	d a			c d e	b d c	a c d		
V	v2	V3		<i>v</i> ₁	V2	<i>V</i> 3		<i>v</i> ₁	<i>V</i> ₂	V ₃		<i>v</i> ₁	V2	V3			<i>v</i> ₁	V_2	<i>V</i> 3			<i>v</i> ₁	V2	V3	=	
a	а	b		a	b	е		а	b	с		a	b	b			a	a	b			a	а	b	-	
b c	c b	c e		b c	a d	b a		b c	c a	b a		b c	a c	a d			b c	b e	a d			b c	c b	c a		
	d	d		e	e	d		e	d	e		e	e d	c		_	e	c c	e			e	e d	d	_	
v_1	<i>v</i> ₂	V ₃		<i>v</i> ₁	V ₂	V ₃		<i>v</i> ₁	v_2	V ₃		<i>v</i> ₁	<i>V</i> ₂	<i>V</i> 3		_							V1	Va	V2	Va
a b c	a c e d	c a d		a b c d	a b e	b a c		a b c d	b a c	b c a d		a b c d	b a c d	b a d c		a L	1	V2 b a c	V3 C a b	c b		-	a b c	a b d	b a c	b a d
	b	b			d	d			d	e		e f	f e	e f		_		L		a		-	d	с	d	с

(Bredereck, Chen, and Woeginger 2013) no co

Theorem

For each fixed $d \ge 2$, the d-Euclidean domain cannot be characterised by finitely many forbidden subprofiles.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Subject to $P \neq \exists \mathbb{R}$, this is obvious!

Theorem

For each fixed $d \ge 2$, the d-Euclidean domain cannot be characterised by finitely many forbidden subprofiles.

Subject to $P \neq \exists \mathbb{R}$, this is obvious! But we can prove it without assumptions via a connection to the theory of realisability of *oriented matroids*.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem

For each fixed $d \ge 2$, there are d-Euclidean profiles with n voters and m alternatives such that every integral Euclidean embedding uses at least one coordinate that is

 $2^{2^{\Omega(n+m)}}$

On the other hand, every d-Euclidean profile can be realized by an integral Euclidean embedding whose coordinates are at most

 $2^{2^{O(n+m)}}$

Recognising Multidimensional Euclidean Preferences

Dominik Peters

Department of Computer Science University of Oxford

COMSOC - 22 June 2016

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで