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Abstract
We introduce the domain of preferences that are single-
peaked on a circle, which is a generalization of the well-
studied single-peaked domain. This preference restric-
tion is useful, e.g., for scheduling decisions, and for
one-dimensional decisions in the presence of extrem-
ist preferences. We give a fast recognition algorithm
of this domain, provide a characterisation by finitely
many forbidden subprofiles, and show that many popular
single- and multi-winner voting rules are polynomial-
time computable on this domain. In contrast, Kemeny’s
rule remains hard to evaluate, and several impossibility
results from social choice theory can be proved using
only profiles that are single-peaked on a circle.

1 Introduction
A central problem in the study of multi-agent systems is the
aggregation of agents’ preferences in order to make group
decisions. Impossibility theorems and computational hard-
ness result make this problem a hard one to solve. However,
a successful line of research going back to Black’s (1948)
seminal article has managed to circumvent many problems
in (computational) social choice for the special case when
agents’ preferences are single-peaked. Under this preference
restriction, we assume that agents have preferences over the
possible values of a one-dimensional quantity such as the tim-
ing of a deadline, a tax rate, a thermostat setting, or the price
of a new product. A preference ordering is single-peaked if
an agent has a certain most-preferred value of the quantity
and derives less and less satisfaction from values that are
further away from the subjective optimum. Another popular
application of this setting is in political elections, where it is
often held that candidates can be ordered on a left-to-right
spectrum making the voters’ preferences single-peaked.

Preference profiles that consist solely of single-peaked
preference orderings have attractive properties, both algorith-
mically and in terms of their social choice behaviour (Elkind,
Lackner, and Peters 2016). For example, winner determina-
tion problems that are computationally hard in the general
case tend to be easy when restricted to single-peaked profiles
(Brandt et al. 2015; Betzler, Slinko, and Uhlmann 2013), and
the single-peaked domain admits a strategyproof voting rule
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Figure 1: Example of preferences single-peaked on a circle.

and guarantees the existence of Condorcet winners as well as
transitivity of the majority relation (Moulin 1991).

The usefulness of results of this type is limited by the
extent to which profiles in practice actually happen to be
single-peaked. One way of dealing with this is to con-
sider less restrictive generalisations of single-peakedness.
Maybe the structure of the alternative space is not quite one-
dimensional, and in this case it might be useful to consider
preferences that are single-peaked on a tree (Demange 1982).
This domain is notably larger, yet still retains many desir-
able properties in social choice terms; however, its algorith-
mic usefulness is more mixed (Yu, Chan, and Elkind 2013;
Peters and Elkind 2016).

In this paper, we identify a new preference restriction:
being single-peaked on a circle. Here we assume that alterna-
tives can be placed on a circle, with agents’ preferences again
being decreasing on both sides of their peaks. See Figure 1
for some example shapes that ‘preference curves’ might have
in this setting; higher points are more preferred. Note that
the circle wraps around, and so h and a are adjacent. Intu-
itively, a preference profile is single-peaked on a circle if, for
every agent, we can ‘cut’ the cycle once so that the agent’s
preferences are single-peaked on the resulting line. Crucially,
the location of the cutting point may differ for each agent.

The aim of this paper is to explore this new preference do-
main in detail. We will find that this domain is algorithmically
useful (it often allows for efficient winner determination), but
it performs less convincingly in terms of axiomatic properties
(since voting paradoxes still occur and impossibility results
can still be proven). Interestingly, this is precisely opposite
to how the results turned out for single-peakedness on trees.



Motivating Examples. There are many practical scenarios
where we might expect preferences to be single-peaked on a
circle. This is even the case when, on first sight, there seems
to be no circle anywhere. Indeed, suppose that alternatives
are naturally ordered on a line; we may pretend this line
is a circle by joining up its endpoints. Of course, every
order that is single-peaked on the line is also single-peaked
on the circle. But crucially, the reverse of such an order,
now single-caved on the line, is still single-peaked on the
same circle. Thus, our new preference restriction allows
us to combine single-peaked
and single-caved votes (as
shown on the right). One in-
terpretation is that this move al-
lows us to accommodate “ex-
tremists”. For example, while
most people have a sweet spot
somewhere on the left-right political axis, some people might
dislike centrist options and prefer the extremes. When plan-
ning a vacation, some might have an optimal climate in mind,
while others like it both very cold (skiing) and very hot
(beaches), but dislike compromises (England).

Other examples of alternative spaces are more explicitly
cyclic. Consider, for example, finding a good time for a
daily event (such as a day or night shift, or a meeting, or
the timing of backups) where possibilities are arranged in a
24 hour cycle. A similar structure exists when scheduling
an international phone call; here, different time zones are
arranged along the equator, and lead to cyclic preferences.

But perhaps the most appealing example of preferences
that can be expected to be single-peaked on a circle come
from problems inspired by facility location. Rather many
structures have a boundary that is (roughly) isomorphic to
a cycle, including most cities and countries. The problem
of deciding where to locate a new airport for a city would
be one example, since airports are usually positioned on the
boundary. Similarly, where should a company build new
office space? To which coastal region should a family move?
Where do we want to sit in a football stadium? Another
plausible application could be inspired by security concerns,
if we consider the placement of border security checkpoints.
Contributions. We formally define single-peakedness on
circles and immediately extend this definition to preferences
with ties, and to dichotomous (approval) preferences.

We show that it is possible to efficiently recognise whether
a given preference profile is single-peaked on some circle,
and if so return a suitable circle. For the case of preferences
without ties, we give a recognition algorithm that runs in
linear time, matching the performance in the case for the line.

We characterise the domain of preferences single-peaked
on a circle through a list of finitely many forbidden subpro-
files with 2 voters and 5 alternatives, and with 3 voters and 4
alternatives. The proof of this characterisation implies that
our linear-time recognition algorithm can certify its negative
answers by exhibiting a forbidden subprofile.

While single-peakedness on a line serves as a way to
circumvent many impossibility results in social choice,
we show that such impossibilities (including the Gibbard–
Satterthwaite theorem) can still be proven when preferences

are allowed to be single-peaked on a circle.
We then study the algorithmic properties of our new pref-

erence extension. We show that Young’s voting rule (and
also Young scores) can be efficiently computed if preferences
are single-peaked on a circle; this algorithm also improves
upon the state-of-the-art when it comes to preferences single-
peaked on a line. We also show that several multi-winner
voting rules are efficiently computable in our restricted case,
including the Chamberlin–Courant rule and Proportional Ap-
proval Voting (PAV). These results rely on a recent technique
using total unimodularity and integer programming (Peters
2016). On the other hand, we show that McGarvey’s theo-
rem (McGarvey 1953) can be proven using only preferences
single-peaked on a circle; thus, Kemeny’s rule remains NP-
hard to evaluate even in this setting.

2 Definition
Let A be a finite set of alternatives (or candidates). A weak
order (or preference relation) is a binary relation < over A
which is complete and transitive. A linear order is a weak
order that is antisymmetric, and so does not allow preference
ties; a strict linear order � is the irreflexive part of a linear
order. A profile P = (v1, . . . , vn) over A is a list of weak
orders over A. The elements of N = {1, . . . , n} are called
voters, and we associate voter i ∈ N with the order vi,
which we call the vote of voter i. For convenience, we write
a <i b whenever (a, b) ∈ vi, i.e., when voter i weakly prefers
alternative a to alternative b. We also use �i and ∼i for the
strict and indifference parts of <i. We will always write m
for the number of alternatives and n for the number of voters.
If vi is a linear order, we write top(vi) for i’s most-preferred
alternative.

An axis C is a strict linear order of the alternatives. We
usually think of an axis as describing the underlying one-
dimensional structure of the alternative space. A linear order
vi is single-peaked with respect to the axis C if for each pair
of alternatives a, b ∈ A with top(vi)CbCa or aCbCtop(vi)
it holds that b �i a. Let us also give another, equivalent
definition. An interval I ⊆ A of an axis C is any set such
that for all a, b, c ∈ A, if we have a, c ∈ I and a C b C c,
then b ∈ I . Then a vote vi is single-peaked with respect
to the axis C if and only if for every c ∈ A, the top-initial
segment {a ∈ A : a �i c} is an interval of C. This definition
in terms of intervals immediately gives a definition of the
single-peaked property for weak orders as well. There are
several possible definitions of single-peakedness for weak
orders; the one we use here is often referred to as possible
single-peakedness (Lackner 2014), since it is equivalent to
saying that there exists a linearisation of the weak order
which is single-peaked.

We say that two axes C and C′ are cyclically equivalent if
there is l ∈ [m] such that we can write a1Ca2Ca3C· · ·Cam
and al C′ al+1 C′ · · · C′ am C′ a1 C′ · · · C′ al−1. For an
axis C, we then define the circle C(C) of C to be the set of
axes cyclically equivalent to C. Any set C of axes that can
be written as C = C(C) for some C we call a circle. For
example, C = {aC bC c, bC′ cC′ a, cC′′ aC′′ b} is a circle.
Note that “cutting” a circle C at a point yields an axis C ∈ C.
We say that C starts in a ∈ A if aC b for all b ∈ A \ {a}.
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Definition. Let C be a circle. A vote vi is single-peaked on
C if there is an axis C ∈ C such that vi is single-peaked with
respect to C. A preference profile P is single-peaked on a
circle (SPOC) if there exists a circle C such that every vote
vi ∈ P is single-peaked on C.

Intuitively, a vote vi is single-peaked on C if C can be cut
so that vi is single-peaked on the resulting line.

Again let us state another equivalent defini-
tion. An interval I ⊆ A of a circle C is a set
that is an interval of one of the axes C ∈ C of
the circle. Then a vote is single-peaked on a
circle C if and only if each top-initial segment
{a ∈ A : a �i c} is an interval of C. Note that the comple-
ment A \ I of an interval I of C is again an interval. Thus, a
weak order < is single-peaked on C if and only if its reverse
~< = {(b, a) : (a, b) ∈ <} is also single-peaked on C.
A vote is single-caved if its reverse is single-peaked. It

follows, then, that mixtures of single-peaked and single-caved
orders (on the same axis) are SPOC. However, not all SPOC
profiles have this form; one such example is the profile shown
in Figure 1, where the circle cannot be cut so as to make every
preference curve either single-peaked or single-caved.

3 Recognition Algorithms
In this section we design algorithms that decide whether a
given profile is single-peaked on some circle, and if so, return
a suitable circle C.

A matrix M = (aij) with aij ∈ {0, 1} has the consecutive
ones property if the columns of M can be put into a linear
order C so that for every row of M , the columns with 1-
entries form an interval of C. The matrix M has the circular
ones property if its columns can be arranged in a circle C so
that the 1-entries of each row form an interval of C. Given our
definitions in terms of intervals above, it is straightforward
to translate a profile P of weak orders into an mn × m
matrix M so that P is single-peaked [single-peaked on a
circle] if and only if M has the consecutive [circular] ones
property (Bartholdi III and Trick 1986): Take one column for
each alternative, and one row for every top-initial segment
of every voter in P ; the row is the incidence vector of the
segment. Since it is possible to check in linear time whether
a matrix A has the consecutive or circular ones property
(Booth and Lueker 1976), this gives us an O(m2n) algorithm
to recognise profiles that are single-peaked on a circle.

In the remainder of this section, we design a more explicit
algorithm that runs in time O(mn) when the input profile
consists of linear orders.1

Suppose P = (v1, . . . , vn) is a profile of linear orders
over A, and fix some alternative z ∈ A. We will build
another profile P ′ = (vu1 , v

l
1, . . . , v

u
n, v

l
n) of 2n weak orders

by slicing each vote vi at z into an upper part vui and a lower
part vli. The upper part vui ranks all alternatives a such that
a �i z in order of�i, and puts all remaining alternatives into
a least-preferred indifference class. The lower part vli ranks
all alternatives a such that z �i a in reverse order of �i, and

1Actually, the algorithm works whenever P contains at least one
linear order.

again puts all remaining alternatives into a least-preferred
indifference class.
Example. Slicing the order a � b � c � z � d � e � f at
z yields the upper part a �u b �u c �u z ∼u d ∼u e ∼u f
and the lower part f �l e �l d �l z ∼l a ∼l b ∼l c.

The notion of slicing reduces SPOC to single-peakedness:
Proposition 1. Suppose a profile P ′ of weak orders is ob-
tained by slicing each vote of a profile P of linear orders at
some fixed z ∈ A. Then P is SPOC if and only if the profile
P ′ is single-peaked.

Proof. Suppose P is SPOC on C, and let C ∈ C be an axis
starting in z. Since z is least-preferred by all voters in P ′, z is
not contained in any top-initial segment of any voter in P ′.
However, all top-initial segments of votes in P ′ are intervals
of C. Since they do not contain z, they must also be intervals
of C. Thus, P ′ is single-peaked with respect to C.

Suppose P ′ is single-peaked with respect to C. We show
that P is SPOC on C = C(C). Take a top-initial segment S
of a vote vi in P ; we prove that S is an interval of C. If
z 6∈ S, then S is a top-initial segment of vui in P ′. Thus, S is
an interval of C and so an interval of C. If however z ∈ S,
then the complement A\S is a top-initial segment of vli in P ′,
hence an interval of C, and so A \ S is an interval of C. But
the complement of an interval of a circle is again an interval,
and so S is an interval of C. Hence P is SPOC.

Thus, we can use an algorithm that decides whether a
profile of weak orders is single-peaked to decide whether a
profile of linear orders is SPOC. Next, note that if we select
z ∈ A to be the alternative that is ranked last by v1 (say),
then the profile P ′ obtained by slicing P at z contains a
linear order (namely the upper part of v1). Lackner (2014)
has given a O(mn) time algorithm that decides whether a
profile of weak orders containing at least one linear order is
single-peaked. Since P ′ can be constructed from P in time
O(mn), by Proposition 1, we obtain the following.
Theorem 2. There is an O(mn) time algorithm that decides
whether a profile of linear orders is single-peaked on a circle.

4 Characterisation by Forbidden Subprofiles
Ballester and Haeringer (2011) have characterised the domain
of single-peaked profiles of linear orders by a finite collection
of forbidden subprofiles. More precisely, they gave forbidden
profiles with 3 voters and 3 alternatives, and with 2 voters and
4 alternatives such that a profile P is not single-peaked if and
only if it is possible to obtain one of their forbidden profiles
from P by deleting and reordering voters, and deleting and
renaming alternatives. A similar characterisation exists for
single-crossing profiles (Bredereck, Chen, and Woeginger
2013), but no finite characterisation exists for d-Euclidean
profiles (Chen, Pruhs, and Woeginger 2015; Peters 2017).

Here, we prove that a profile is SPOC unless it contains
certain forbidden subprofiles with 2 voters and 5 alternatives
and with 3 voters and 4 alternatives. Let us write B �i C to
mean that b �i c for all b ∈ C and c ∈ C.

3



Theorem 3. A profile P of linear orders on A is not SPOC
if and only if one of the following three cases occurs.

1. There are distinct alternatives a, b, c, d, e ∈ A and voters
vi and vj in P such that

{a, b} �i {c} �i {d, e},
{a, e} �j {c} �j {d, b}.

2. There are distinct alternatives a, b, c, d ∈ A and voters vi,
vj , and vk in P such that

{a, b} �i {c, d},
{a, c} �j {b, d},
{a, d} �k {b, c}.

3. There are distinct alternatives a, b, c, d ∈ A and voters vi,
vj , and vk in P such that

{a, b} �i {c, d},
{b, c} �j {a, d},
{c, a} �k {b, d}.

Proof. Sufficiency. We prove that if one of the three cases
occurs, then P is not SPOC. Since SPOC is closed under
alternative deletion, in each case, we may assume wlog that
P only involves alternatives mentioned in the forbidden con-
dition. Suppose P was single-peaked on the circle C.

1. Considering top-initial segments of size 2, we see that a
must have neighbours b and e in C. Considering top-initial
segments of size 3, and taking complements, we see that
d must have neighbours b and e in C. But this uniquely
determines a circle with aC bC dC eC a; yet this circle
does not include c, a contradiction.

2. Considering top-initial segments of size 2, we see that a
must have neighbours b, c, and d in C. But no vertex of a
circle has three neighbours, a contradiction.

3. Since P is single-peaked on C, so is P with every order
reversed. But after reversing every order, we are again in
case 2: d must have three neighbours.

Necessity. This direction is much more involved, and we
leave the details to the full version of this paper. The proof
strategy is as follows: if P is not SPOC, then the recognition
algorithm of Theorem 2, run on input P , will return a negative
answer. We analyse every way the algorithm of Lackner
(2014) could answer negatively, and in each case construct a
witnessing forbidden structure from among those identified
in the theorem statement.

For the benefit of future research, let us briefly describe
how we obtained Theorem 3. We first implemented a recog-
nition algorithm for SPOC profiles (Theorem 2) and then
iterated through all possible profiles of certain sizes (up to
isomorphism), checking for each whether they were minimal
counterexamples: not SPOC, but every profile obtained by
deleting a voter or an alternative is SPOC. We analysed the
resulting list by hand to come up with the compact representa-
tion in Theorem 3. The proof strategy of case analysis of the
“no”-conditions of a recognition algorithm is (implicitly) also
the approach used in previous characterisations (Ballester
and Haeringer 2011; Bredereck, Chen, and Woeginger 2013;
Cornaz, Galand, and Spanjaard 2012).

5 Impossibility Theorems
One of the major advantages of the traditional single-peaked
domain is the existence of a non-manipulable voting rule on
this domain: The well-known median voter procedure sorts
voters’ most preferred alternatives according to the axis C
and then returns the median alternative a. This alternative is,
in fact, a (weak) Condorcet winner: for any other alternative b,
a (weak) majority of voters prefers a to b. One might hope to
be able to extend this procedure to circles, but this turns out
to be impossible: the Gibbard–Satterthwaite theorem can be
proven using only profiles that are single-peaked on a circle.

A resolute voting rule f on SPOC profiles is a function
assigning a single winning alternative to every SPOC profile
of linear orders. The rule f is non-dictatorial if there is
no fixed voter i such that f always picks i’s top alternative.
The profile obtained from P by replacing vote vi by v′i is
denoted by (P−i, v

′
i). A voting rule f on SPOC profiles is

strategyproof if f(P ) <i f(P−i, v
′
i) for all orders v′i such

that (P−i, v′i) is still SPOC.

Theorem 4 (Gibbard–Satterthwaite Theorem for SPOC).
There is no resolute voting rule on SPOC profiles that is
non-dictatorial, onto, and satisfies strategyproofness.

Proof. This follows immediately from the results of Kim and
Roush (1980) and Sato (2010), who prove this result for an
even more restricted domain consisting only of the 2m orders
which traverse the circle clockwise and counter-clockwise
starting from every possible alternative.

Note that the SPOC orders used in this proof are ‘un-
balanced’, in that the most- and least-preferred alternatives
are adjacent on the circle for every agent. Still, a similar
dictatorship result can be proved even using orders that are
‘Euclidean’ on a circle, where preferences decrease uniformly
in both directions from the peak (Schummer and Vohra 2002).
It can also be shown that, with these Euclidean orders, the
random dictatorship rule is group-strategyproof (Alon et al.
2010b), and there is an intriguing randomized mechanism
that is strategyproof and provides a 3/2-approximation to the
egalitarian social welfare (Alon et al. 2010a).

Another desirable axiomatic property is participation,
which, intuitively, states that no voter can strictly bene-
fit by abstaining from an election. A celebrated result of
Moulin (1988) shows that this property is incompatible with
Condorcet-consistency, which requires the voting rule to se-
lect the Condorcet winner if one exists. This result can also
be proven using only SPOC profiles.

Theorem 5 (No-Show Paradox for SPOC). For m > 4, there
is no resolute voting rule on SPOC profiles that is Condorcet-
consistent and satisfies participation.

Proof. For m = 4 alternatives, one can check that the orig-
inal proof of Moulin (1988) only uses SPOC preference or-
ders; the same holds for the alternative proofs due to Brandt,
Geist, and Peters (2016). More care is needed to extend this
to m > 5; we leave this to the full version of this paper.

As described in the next section, further impossibilities
about tournament-based rules can be deduced from Lemma 6.
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6 Kemeny’s and Young’s Rules
In this section, we will consider the problem of determining
an election winner according to two well-known voting rules,
Young’s rule and Kemeny’s rule, that are NP-hard to evalu-
ate in general (Bartholdi III, Tovey, and Trick 1989; Rothe,
Spakowski, and Vogel 2003; Hemaspaandra, Spakowski, and
Vogel 2005). We will be interested to see whether these prob-
lems can be solved in polynomial time for SPOC profiles.
We leave the complexity of Dodgson’s rule for SPOC profiles
for future work.
Kemeny’s rule is a rank aggregation rule: Given a pro-
file P over A, its aim is to produce a consensus ranking
over A. Suppose r is a linear order over A. Its Kemeny score
is
∑

i∈N |vi ∩ r|, the number of pairwise agreements of r
with P . A Kemeny ranking is a linear order r with maximum
Kemeny score. While it is NP-hard to find a Kemeny ranking
(Bartholdi III, Tovey, and Trick 1989), this problem is easy
for single-peaked profiles whose transitive majority relation
is easily seen to give rise to a Kemeny ranking. For SPOC
preferences, the situation is less clear: the Condorcet paradox
profile (x �1 y �1 z, y �2 z �2 x, z �3 x �3 y) on 3
alternatives is SPOC, so SPOC does not guarantee a transitive
majority relation. In fact, SPOC does not guarantee anything
at all about the majority relation.

Lemma 6 (McGarvey’s theorem for SPOC). All (weighted)
majority tournaments are inducible by SPOC profiles.

Proof. Fix a circle C with x1 C x2 C · · ·C xm.
For any arc (xi, xj) of the target tournament,
consider the following two votes which are
single-peaked on C: (subscripts modulo m)

xi+1 � · · · � xj−1 � xi � xj � xj+1 � · · · � xi−1

xx−1 � · · · � xj+1 � xi � xj � xj−1 � · · · � xi+1

These two votes induce a majority arc xi → xj with weight
2, but all other arcs have weight 0. By combining pairs of
such votes, any tournament can be obtained. If odd edge
weights are desired, start with an arbitrary single order, and
then use pairs as above to adjust the weights as needed.

Recall that Kemeny scores only depend on the weighted
majority relation of a profile. Since the profiles in the proof of
McGarvey’s theorem above can be produced in polynomial
time, the hardness of Kemeny in the general case carries over.

Theorem 7. Finding a Kemeny ranking is NP-hard, even for
SPOC preferences.

Indeed, by the same argument essentially all negative (ax-
iomatic or computational) results in the sphere of voting rules
based on (weighted) tournaments (see Brandt, Brill, and Har-
renstein 2016; Fischer, Hudry, and Niedermeier 2016) still
hold restricted to SPOC preferences.
Young’s rule. Given a profile P over A, an alternative c ∈ A
is a Condorcet winner if for every b ∈ A \ {c}, a majority
of voters in P strictly prefers c to b. The Young score of an
alternative c ∈ A is the minimum number of voters that have
to be deleted from P so that c becomes a Condorcet winner.
Then, Young’s rule selects all alternatives with minimum
Young score as winners. It is known that Young winners can

be found in polynomial time for single-peaked preferences
(Brandt et al. 2015), since in this case Condorcet winners
always exists when the number of voters n is odd; and the
case with n even is also handled easily.

Because SPOC does not guarantee the existence of a Con-
dorcet winner, a different approach is needed. We will use the
interpretation of SPOC in terms of intervals of the underlying
circle to give a polynomial-time algorithm that calculates the
Young score of every alternative; clearly this algorithm can
then be run repeatedly to find a Young winner. Of course, our
algorithm also works for preferences single-peaked on a line;
while the algorithm of Brandt et al. (2015) returns only a
Young winner, our algorithm can find the Young score of any
alternative. Note that precise definitions of Young scores dif-
fer slightly: sometimes it is only required that an alternative
be made a weak Condorcet winner through voter deletion; our
algorithm can be easily adapted for this alternative definition.
Theorem 8. For SPOC profiles, the Young score of an alter-
native can be computed in O(mn2) time.

Proof. We fix an axis C ∈ C that starts with the alternative
a whose Young score we want to compute; let aC bC · · ·C c
(b is the candidate right of a, c is the rightmost candidate).
We partition voters into two sets: N1 = {i ∈ N : b �i a}
and N2 = N \N1. Since P is SPOC, for any voter i, the set
Ii := {d ∈ A : d �i a} forms an interval of C. Voters in N1

correspond to intervals containing b; voters in N2 correspond
to intervals containing c but not b, and to empty intervals.

The idea behind our algorithm is that if there are voters i
and j with Ii ⊆ Ij , then it is at least as profitable (for pur-
poses of making a the Condorcet winner) to remove voter j
as to remove voter i. Now note that the intervals Ii of voters
in N1 are nested by set inclusion, and similarly for voters
in N2. Thus, we let N−r1 and N−s2 denote the subsets of N1

and N2 obtained by deleting, respectively, the r and s voters
from N1 and N2 that have the r and s largest (with respect
to set inclusion) intervals Ii. Because of the nesting property,
if there is a way of deleting r and s voters from N1 and N2

that makes a the Condorcet winner, then the deletions giving
N−r1 and N−s2 also make a the Condorcet winner.

These observations suggest the following simple algorithm:
For every pair (r, s) with 0 6 r 6 |N1| and 0 6 s 6 |N2|,
we check whether a is the Condorcet winner in N−r1 ∪N−s2 .
We return a pair (r∗, s∗) with r∗ + s∗ minimum for which
this is the case. Then the Young score of a is r∗ + s∗. If no
such pair exists, the Young score of a is infinite.

To see that this algorithm can be run in O(mn2) time, we
show how to check in O(m) time whether a is the Condorcet
winner in N−r1 ∪N−s2 . To do so, we precompute for every
x ∈ A \ {c}, 0 6 r 6 |N1|, and 0 6 s 6 |N2| the numbers

d1r(x) = |{i ∈ N−r1 : a �i x}| − |{i ∈ N−r1 : x �i a}|,
d2s(x) = |{i ∈ N−s2 : a �i x}| − |{i ∈ N−s2 : x �i a}|.

Note that a is a Condorcet winner in N−r1 ∪N−s2 if and only
if for all x ∈ A \ {c} it holds that d1r(x) + d2s(x) > 0. The
quantities d1r(x) and d2s(x) can be precomputed in O(mn2)
time. Verifying whether d1r(x)+d2s(x) > 0 requires constant
time and hence O(m) time for every x ∈ A \ {c}.
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7 Multi-Winner Elections
Much recent work has focussed on voting rules that select a
committee W ⊆ A of candidates, where |W | = k has some
desired size k. A particularly influential rule for this task is
due to Chamberlin and Courant (1983). According to their
rule, each voter i is represented by their favourite (highest-
ranked) alternative in W , say ci ∈ W . Voter i then derives
her Borda score (i.e., position counting from the bottom) of
ci in her ranking as her utility. The Chamberlin–Courant rule
selects a committee of size k that maximises total utility. By
replacing Borda scores by other scoring vectors, we obtain a
whole family of rules. Finding a winning committee under
the Chamberlin–Courant rule is known to be NP-hard for
Borda scores (Lu and Boutilier 2011); however, this problem
can be solved by dynamic programming in polynomial time
if the input profile is single-peaked (Betzler, Slinko, and
Uhlmann 2013). An alternative method for single-peaked
preferences proceeds via integer programming with totally
unimodular constraints (Peters 2016). This method can be
extended to also work for SPOC using a technique described
in a useful survey by Dom (2009, Sec 4.1.4).
Theorem 9. For SPOC profiles, a winning committee for the
Chamberlin–Courant rule can be found in polynomial time
for any scoring vector.

Proof. Let P be a SPOC preference profile, and k the tar-
get committee size. Our algorithm adapts the approach of
Peters (2016), where the following integer-programming for-
mulation for calculating an optimal Chamberlin–Courant
committee is introduced:

maximise
∑
i∈N

∑
r∈[m]

wr · xi,r (CC-IP)

subject to
∑
c∈C

yc = k (S)

xi,r 6
∑

c : ranki(c)>r

yc for i ∈ N, r ∈ [m] (Pi,r)

xi,r ∈ {0, 1} for i ∈ N, r ∈ [m]

yc ∈ {0, 1} for c ∈ C

Here, (S) and (Pi,r) are labels for the constraints. In the IP,
the binary variables yc encode the k committee members,
and in optimum we have xi,r = 1 if and only if there is a
committee member c who is ranked in position r or higher
by voter i. The coefficients wr in the objective function
determine the scoring vector used; choosing wr = 1 for all r
yields Borda scores.

Using the algorithms from Section 3, find a circle C such
that P is single-peaked on C, and take some C ∈ C ar-
bitrarily. We now split constraints of form (Pi,r) into two
types. Set Ti,r = {c : ranki(c) > r} to be the rth top-initial
segment of i. Define

R1 = {(Pi,r) : Ti,r is an interval of C},
R2 = {(Pi,r) : C \ Ti,r is an interval of C} \R1.

Since P is single-peaked on C, every Ti,r is an interval of C.
Thus, either Ti,r or C \Ti,r is an interval of C. It follows that

R1 and R2 partition the set of all the constraints of type (Pi,r).
We now modify (CC-IP) by subtracting the constraint (S) (in
the form 0 =

∑
c∈C yc−k) from each constraint (Pi,r) ∈ R2.

In this way, we obtain the following constraints:

xi,r 6
∑

c ∈ Ti,r

yc for (Pi,r) ∈ R1 (P ∗i,r)

xi,r 6 −
∑

c 6∈ Ti,r

yc + k for (Pi,r) ∈ R2 (P ∗i,r)

We write (CC-IP∗) for the program obtained by replacing
(Pi,r) by (P ∗i,r) in (CC-IP). It is easy to see that a solution
vector (x,y) is feasible in (CC-IP) if and only if it is feasi-
ble in (CC-IP∗), since both systems include the constraint∑

c∈C yc = k. Hence the two formulations are equivalent.
We now claim that the constraint matrix of (CC-IP∗) is to-

tally unimodular, and thus this integer program can be solved
in polynomial time by solving its LP relaxation (Conforti et
al. 2014, p. 183). To see this, consider first the constraint
matrix Ay of only the variables {yc : c ∈ C}. If we order its
columns in the order given by C, then a row corresponding
to a constraint in R1 consists of a block of consecutive 1s
surrounded by 0s, and a constraint from R2 consists of a
block of consecutive−1s surrounded by 0s. Constraint (S) is
a row consisting only of 1s. Hence Ay is an ‘interval matrix’
and thus totally unimodular (Schrijver 1998, Sec 19.3–4). To
obtain the full constraint matrix Ax,y of (CC-IP∗), we need to
add columns to Ay corresponding to xi,r-variables. But each
such variable occurs in exactly 1 constraint, and thus each col-
umn to be added contains just a single −1, and 0s otherwise.
Since totally unimodular matrices are closed under append-
ing (positive or negative) unit columns (Schrijver 1998, Sec
19.4), we see that Ax,y is also totally unimodular.

The other algorithms via total unimodularity discussed by
Peters (2016) can be adapted using the same kind of argu-
ment; in particular this gives a polynomial-time algorithm for
egalitarian Chamberlin–Courant, for Proportional Approval
Voting (PAV), and certain OWA-based rules.

8 Discussion and Open Problems
Our results show that restricted preference domains that be-
have unfavourably in terms of axiomatic properties might
still be very useful for algorithmic purposes. Indeed, our algo-
rithm for Young’s rule demonstrates that it is possible to move
to a larger class than single-peaked preferences while main-
taining polynomial-time runtime bounds. Thus, our findings
can be seen as a challenge to established algorithmic results
based on restricted preferences: to which degree can their
application domain be extended without resorting to super-
polynomial algorithms? A specific open problem: what is the
complexity of computing Dodgson scores for SPOC profiles?
This seems to be open even for single-peaked profiles.

Our definition of SPOC is not the only sensible defini-
tion. One alternative definition that would fit into the gen-
eralised notion of single-peakedness introduced by Nehring
and Puppe (2007) is based on shortest paths: it requires that
for every voter i and for every alternative x, there is a shortest
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path between top(i) and x along which i’s preferences are
decreasing. (Without the word “shortest” this is equivalent to
SPOC.) The impact of this alternative definition is that every
voter’s least-preferred alternative needs to be antipodal to
the voter’s peak; this is strictly more restrictive than SPOC.
It would be interesting to see whether this smaller domain
allows for a wider range of positive results than SPOC.

Another direction for future work would be to extend the
SPOC concept to two (and more) dimensions – preferences
single-peaked on a sphere – but this may be difficult since
little is known even about extensions of single-peakedness
on a line to two or more dimensions (see Sui et al. 2013).
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