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Abstract

We propose a model of interdependent scheduling
games in which each player controls a set of ser-
vices that they schedule independently. A player
is free to schedule his own services at any time;
however, each of these services only begins to ac-
crue reward for the player when all predecessor
services, which may or may not be controlled by
the same player, have been activated. This model,
where players have interdependent services, is mo-
tivated by the problems faced in planning and co-
ordinating large-scale infrastructures, e.g., restor-
ing electricity and gas to residents after a natural
disaster or providing medical care in a crisis when
different agencies are responsible for the delivery
of staff, equipment, and medicine. We undertake a
game-theoretic analysis of this setting and in par-
ticular consider the issues of welfare maximization,
computing best responses, Nash dynamics, and ex-
istence and computation of Nash equilibria.

1 Introduction
Restoring critical infrastructure in the aftermath of natural
disasters or extreme weather events where water, power, and
gas services may all be interrupted is one of the most impor-
tant ways of limiting the impact of the disaster on society. Our
motivation for this work is drawn from situations where com-
panies and governments need to restore interdependent in-
frastructure after major disruptions due to disasters and other
forces. For instance, the electric company may be able to re-
store power lines to individual homes, but no electricity will

flow until the gas company can supply gas to the main genera-
tor. Once the power is flowing, the electric company receives
its reward (income) from those customers receiving power.
In order to pump water, power needs to have been restored
and the water lines need to be repaired. Each of these objec-
tives are typically broken down into smaller tasks that restore
availability to a subset of customers. In these settings, mul-
tiple agents (also called players) are responsible for different
services and may have conflicting interests: the power com-
pany may deploy its services in an order that maximizes reach
to its subscriber base first, as opposed to undertaking repairs
that allow another company to restart the water pumps. This
paper formalizes a novel abstract model of this setting and
studies the problem of finding a joint deployment schedule
of services through a game theoretic lens, as players in this
setting are independent decision makers. We consider classic
questions such as welfare maximization, best responses, and
the existence and computation of Nash equilibria.

From the community’s perspective, the overall goal is to
reduce the size and length of the blackout. Indeed, gov-
ernments in the US plan for infrastructure restoration at a
higher level than the individual company, e.g., the state gov-
ernment or regional emergency management planning. How-
ever, when disasters become too large or individual compa-
nies refuse to cooperate with regional disaster management
plans then companies might be unable (or unwilling) to obey
global welfare considerations in restoring their infrastructure.
Cavdaroglu et al. [2013] and Coffrin et al. [2012] provide
models that integrate the restoration planning and schedul-
ing decisions to show that there is significant value in this
integration as opposed to tackling both problems in a de-
centralized manner. Our model of interdependent schedul-
ing games (ISGs) is a step towards understanding the im-



pact of decentralized decision making in settings with in-
terdependencies. Other examples of ISGs include coordinat-
ing multiple providers for humanitarian logistics over mul-
tiple regions, where roads need to be repaired before sup-
plies can be delivered and tents must be erected before
supplies can be distributed, or the coordination of interde-
pendent supply chains which may involve ports, terminals,
railway, and truck operators [Van Hentenryck et al., 2010;
Simon et al., 2012].

In our formalization, we consider a set of players, each of
which has a set of services under their control that need to
be deployed. The individual players’ services may have de-
pendencies among each other and, crucially, may also be de-
pendent on the status of other players’ services. In contrast to
most traditional scheduling settings, where a task cannot be
scheduled unless all of its dependencies have been fulfilled,
services in our setting can be deployed at any time, even be-
fore its dependencies have been deployed. However, a player
only starts accruing reward for a service v once all of its de-
pendencies have been deployed as well. At this point, we say
that v has been activated and the player continues to gather
reward for every time step in which the service is active. A
typical reward in our setting would be collecting fees from
utility subscribers who have had their service restored.

Contributions. We present a scheduling model with de-
pendencies among services that is suitable for scenarios in
power restoration after natural disasters. We show that when
there is only a single player, a welfare-maximizing schedule
can be found in polynomial time. For more players, welfare
maximization becomes NP-complete even with just two ser-
vices per player. Regarding game-theoretic solution concepts,
we prove that in general, pure Nash equilibria are not guaran-
teed to exist, and that it is NP-hard to decide their existence.
On the positive side, we consider a restricted setting where all
services have uniform (equal) reward and prove that a pure
Nash equilibrium always exists and can be computed in poly-
nomial time. Similarly, best responses can be computed effi-
ciently but they need not converge to a Nash equilibrium, even
if rewards are uniform. For the uniform rewards case, we also
give bounds for the price of anarchy and the price of stabil-
ity. Further, we provide an ILP formulation of the problem
and demonstrate that, for generated data, we can find welfare
maximizing schedules quickly.

2 Related Work
The problem of finding a schedule of tasks that maximizes the
reward is an important question in scheduling, a classic area
of computer science with many practical and important prob-
lems. Most classical scheduling problems focus on allocating
scarce resources to multiple tasks in order to maximize an ob-
jective function or minimize total time [Brucker and Brucker,
2007; Lee et al., 1997]. In contrast to most of the schedul-
ing literature, the dependencies (or precedence constraints)
between the services in our model do not prevent the player
from scheduling a service before its prerequisites are fulfilled.
Instead, they keep the player from receiving reward from the
service until the prerequisites are fulfilled.

Encouraging distributed agents, each of which may be re-

sponsible for only a small piece of a larger task, to work to-
gether to solve complex problems has a rich history in artifi-
cial intelligence and multi-agent systems research. Schedul-
ing distributed tasks in domains where agents are imbued with
their own reward functions but are ultimately cooperative
as they can jointly benefit from finding coordinated sched-
ules, has been studied in a probabilistic setting by Zhang and
Shah [2014]. Additionally, task oriented domains [Rosen-
schein and Zlotkin, 1994], which typically involve multiple
agents working together cooperatively, are a popular frame-
work for investigating mechanisms and properties of multi-
agent domains where agents either need to work together or
negotiate over work to be accomplished. Zlotkin and Rosen-
schein [1993] formalize the notion of strategic behavior when
agents negotiate in task oriented domains. They provide a
characterization of the type of lies (e.g. hiding jobs) and re-
ward functions that admit incentive compatible mechanisms
for a number of classic domains, though none of these classic
domains involve scheduling with dependencies.

We focus our analysis on game-theoretic issues such as
best response dynamics and Nash equilibria that are keenly
applicable in settings such as ours where agents, trying to
maximize independent utility, may or may not have explicit
incentives to cooperate towards maximizing global welfare.
Scheduling domains in which players compete for common
processing resources were introduced by Agnetis et al. [2000;
2004] and Baker and Smith [2003]. The most traditional ap-
proach in multi-agent scheduling is to consider a single cen-
tralized authority optimizing the whole domain. There have
been a number of recent works focused on decentralized
scheduling mechanisms. Agnetis et al. [2007] consider auc-
tion and bargaining models, which are useful when several
players have to negotiate for processing resources on the ba-
sis of their scheduling performance. Scheduling auctions typ-
ically divide the schedule horizon into time slots, and these
time slots are auctioned among the players. The bargaining
approach considers two players that have to negotiate over
possible schedules. Abeliuk et al. [2015] consider a two-
player bargaining mechanism for any setting where the re-
ward of one player does not depend on the actions taken by
the other. Their results hence apply to special instances of
ISGs with two players. For additional literature on mecha-
nism design for non-cooperative scheduling games see, e.g,
Heydenreich et al. [2007], Christodoulou et al. [2004], and
Angel et al. [2006].

Another related line of research is multi-agent project-
scheduling. Here, each project is composed of a set of ac-
tivities, with precedence relations between the activities, and
each activity belongs to an agent. Each activity is associ-
ated with a minimum and a maximum processing time and
agents have to choose a duration for all their activities. Com-
pressing the duration of an activity generates a cost to the
agent, and an agents’ payoff is a fixed proportion of the total
project payment, which depends on the project completion
time. A mechanism design approach for multi-agent project-
scheduling by Confessore et al. [2007] proposes a decen-
tralized mechanism using combinatorial auctions. Recently,
Briand and Billaut [2011] took a first step in analyzing game
theoretical properties such as the existence and computation



of Nash equilibria as well as studying the price of anarchy in
this setting. However, their setting significantly differs from
that considered in this paper in that activities of the same
agent can be processed in parallel and that all agents receive
some fraction of the reward of a common production pro-
cess. In contrast, we focus on agents involved in indepen-
dent projects with separate objective functions, only related
by precedence constraints between each other.

3 Our Model
A directed graph G is a pair (V,E) of a finite set of vertices
V and a set of directed edges E ⊆ V × V where (u, v) ∈ E
means that there is a directed edge from u to v in G. We
will always assume that G is acyclic, i.e., there is no set of
edges {(v1, v2), (v2, v3), . . . , (vn, v1)} ⊆ E. We say that G
is transitive if (u, v), (v, w) ∈ E implies that (u,w) ∈ E.
The transitive closure of a graph G = (V,E) is a graph G′ =
(V,E′) such that (u, v) ∈ E′ if a directed path connects u
and v in G. The in-neighborhood of a vertex v is the set of
vertices with edges to v and is denoted by N−G (v) = {u ∈
V : (u, v) ∈ E}.

An interdependent scheduling game (ISG) with k players
is given by a tuple ((T1, . . . , Tk), G, r). Each player i needs
to schedule a set of services Ti, where the Ti are pairwise dis-
joint. We denote the set of all services by T =

⋃k
i=1 Ti. We

assume without loss of generality that |T1| = · · · = |Tk| = q.
Within T there are dependencies: a service will not activate
until it and all its prerequisites are deployed. We formalize
this dependency relation as a transitive acyclic directed graph
G = (T,E). If (u, v) ∈ E, then service v will generate a re-
ward only after service u has been deployed.To be precise, at
each time step t, each player deploys exactly one service. In
particular, we assume that every service takes exactly one unit
of time to deploy. A service which takes longer to deploy can
be represented as a series of services depending on each other
where only the final service generates a reward. For each ser-
vice v ∈ T , there is a reward r(v) ≥ 0, representing payment
received or subscribers served in each time period that the ser-
vice is active. We will sometimes consider the more restric-
tive case of uniform rewards where for all v ∈ T, r(v) = 1.

A solution for an ISG is a schedule of all services in T . As
rewards are non-negative, players do not have an incentive
to leave a gap between the deployment of two services. We
can hence represent a schedule by a tuple π = (π1, . . . , πk),
where each πi : Ti → {1, . . . , |Ti|} is a permutation of the
services Ti of player i. This permutation uniquely determines
the schedule for player i and the position of a service in the
permutation denotes the time when it is deployed.

A service v is active during a time step if itself and all
services in N−G [v] are deployed at or before that time step.
We denote by a(v) the time when v becomes active, i.e.
a(v) = max{π(w) : w ∈ {v} ∪ N−G [v]}. At each time
step, all active services v generate the reward r(v). Thus,
for a schedule π = (π1, . . . , πk), the utility of player i is
Ri(π) =

∑q
t=1

∑
v∈Ti,t≥a(v) r(v). The utilitarian social

welfare (or just welfare) of a schedule π is
∑k

i=1Ri(π).
We graphically represent an ISG in Example 1. Player i’s

services Ti form the nodes shown in the ith row. The services

in a row, from left to right, represent player i’s schedule, while
the label of a service indicates its reward. For ease of presen-
tation, we omit arrows that are implied by transitivity of the
dependency relation; the full dependency graph is the transi-
tive closure of the depicted graph. This representation is not
completely unambiguous as a service v is identified only by
r(v) and the edges in NG(v). However, while indistinguish-
able (subsets of) tasks may exist, these can be interchanged
within any particular outcome without effect.

Example 1. Consider the following example.
π1 : 10 1 1

π2 : 1 100 100

π′1 : 1 1 10

π′2 : 100 100 1

Both of the services with reward 100 belong to Player 2 but
depend upon a service belonging to Player 1. For schedule π,
R1(π) = 3 ·10 + 2 ·1 + 1 = 33 as the service with reward 10
is active for three time steps and the other services are active
for two and one time step, respectively. Similarly,R2(π) = 3·
1+2·100+100 = 303. For π′,R1(π′) = 3·1+2·1+10 = 15
while R2(π′) = 3 · 100 + 2 · 100 + 1 = 501. Hence, Player
1 can sacrifice some individual reward to increase welfare.

4 Best Responses

If all other players’ actions are fixed, the resulting problem
for an individual player is that of finding a best response.
Let Ri(π−i, π

′
i) be the reward for player i for the schedule

(π1, . . . , πi−1, π
′
i, πi+1, . . . , πk).

Problem: ISG BEST RESPONSE.
Instance: An ISG ((T1, . . . , Tk), G, r), a schedule π−i for all
players {1, . . . , k} \ {i}, and an integer W .
Question: Is there a π′i such that Ri(π−i, π

′
i) ≥W ?

Assuming that players are individually rational they will
favor schedules that maximize their own reward, i.e., their
own subscriber base or service network. Hence an individual
player will always favor a schedule such that every service v
that he controls is deployed only after all other services under
the player’s control that v depends on have been deployed.
Formally, the following Lemma holds:

Lemma 1. Let ((T1, . . . , Tk), G, r) be an ISG with general
rewards and π−i a schedule for all players except player i.
Let Gi = (Ti, Ei) denote the subgraph of G induced by the
vertices in Ti. Then, there exists a best response πi for player
i such that

πi(u) < πi(v) for all (u, v) ∈ Ei. (1)

Proof. Let σ(πi) := |{v ∈ Ti : ∃(u, v) ∈ Ei with πi(u) >
πi(v)}| denote the number of services in Ti that depend on
another service in Ti which is scheduled later. Let π′i denote a
best response of player i such that σ(π′i) is minimal among all
best responses. We suppose for contradiction that the state-
ment is false, therefore σ(π′i) ≥ 1. Choose (u, v) ∈ Ei

with π′i(u) > π′i(v) in such a way that there is no u′ with
(u′, v) ∈ Ei and π′i(u

′) > π′i(u). Consider the following



modified schedule π∗i for player i:

π∗i (w) :=


π′i(w)− 1 π′i(w) ∈ [π′i(v) + 1, π′i(u)]

π′i(u) w = v

π′i(w) else.

The following two properties hold: (i): The schedule π∗i
is also a best response. The only service that is scheduled
to a later time in π∗i (and hence could cause itself or ser-
vices depending on it to generate a smaller reward) is v.
However, v did not activate before time step π′i(u) under π′
and as π∗i (v) = π′i(u) the reward generated by v does not
change. The same holds for all services that depend on v. (ii):
σ(π∗i ) < σ(π′i). First, note that v does not contribute towards
σ anymore as π∗i (v) > π∗i (u) (the same holds for all other
services that v depends upon by the maximality of u). Now,
consider any service w that did not contribute to σ(π′i). As
the ordering among all services except v remains the same,
such a w can only contribute to σ(π∗i ) if it depends on v and
π′i(v) < π′i(w) < π∗i (v) = π′i(u). But then, it must also de-
pend on u by transitivity and hence it contributed to σ(π′i)
already. From (i) and (ii), we obtain a contradiction to mini-
mality of σ(π′i), concluding the proof.

Note that performing pairwise swaps in a player’s sched-
uled services is not sufficient in the context of the above proof
as this may introduce new forward edges. The above lemma
holds for general rewards. If rewards are uniform, we can use
Lemma 1 to derive a polynomial-time algorithm for an indi-
vidual player’s best response to all other players’ schedules.
Theorem 1. For an ISG with uniform rewards, there exists a
polynomial-time algorithm to compute a best response.

Proof. Consider the subgraph Gi of G induced by the set Ti
of services belonging to player i. For every service u, denote
by η(u) the lower bound on its activation time imposed by
π−i. Formally, η(u) := max{π(v) : v ∈ T \Ti, (v, u) ∈ E}.
Note that (u,w) ∈ Ei implies η(w) ≥ η(u) by transitivity of
Ei.

We give a greedy algorithm that solves the problem opti-
mally. Starting from the first time step, the algorithm succes-
sively schedules a service which minimizes η among all ser-
vices with no incoming edges in Gi. Such a service always
exists, as G (and hence all subgraphs) is acyclic. The service
with all its (outgoing) edges is then removed from Gi.

To prove that the algorithm yields an optimal solution, let
πi be the outcome of the algorithm. Suppose for contradic-
tion that πi is not optimal. Let π∗i be an optimal schedule
satisfying condition (1) (which exists by Lemma 1) maxi-
mizing the first time slot for which any such schedule differs
from πi. Formally, there exists k ∈ N such that (π∗i )−1(i) =
(πi)

−1(i) for all i < k and there is no optimal schedule π′i
satisfying condition (1) with (π′i)

−1(i) = (πi)
−1(i) for all

i < k + 1.
Let a := (π∗i )−1(k) and b := (πi)

−1(k). Consider the
subgraph of Gi from which the first k − 1 entries of πi (and
hence of π∗i ) have been removed. First, observe that a cannot
have any incoming edges as π∗i satisfies condition (1). Hence,
it holds that η(b) ≤ η(a), otherwise the algorithm would have
selected a rather than b. We distinguish three cases:

1. η(b) ≤ π∗i (a). In this case, we set

π∗∗i (w) :=


π∗i (w) + 1 π∗i (w) ∈ [π∗i (a), π∗i (b)− 1]

π∗i (a) w = b

π∗i (w) else.

The reward generated by b increases by π∗i (b)− π∗i (a), at
the same time the reward of at most π∗i (b) − π∗i (a) ser-
vices decreases by 1. Hence, π∗∗ is still optimal and satis-
fies condition (1). Furthermore, (πi)

−1(k) = (π∗∗i )−1(k),
contradicting π∗’s maximality.

2. π∗i (a) < η(b) < π∗i (b). We construct a new schedule π̃∗i
with π̃∗i (b) = η(b) as above. Then, proceed as in 3.

3. π∗i (b) ≤ η(b). Construct a schedule π∗∗i as follows: Set
π∗∗i (b) := π∗∗i (a). Let a′ be the earliest successor of a.
If π∗i (a′) > π∗i (b), set π∗∗i (a) := π∗i (b) and π∗∗i (w) :=
π∗i (w) for all other services. Otherwise, set π∗∗i (a) :=
π∗i (a′) and let a′′ be the earliest successor of a′. Proceed
with a′′ (and possibly its earliest successor) as above until
an earliest successor a∗ satisfies π∗i (a∗) > π∗i (b). The re-
sulting schedule π∗∗ is still optimal and satisfies condition
(1). Furthermore, (πi)

−1(k) = (π∗∗i )−1(k), contradicting
π∗’s maximality.
In all three cases, we reach a contradiction which proves

that our assumption was wrong and πi is indeed optimal.

In contrast, we can obtain the following statement about
general rewards by reduction from single-player welfare max-
imization using Theorem 5.
Corollary 1. For an ISG with general rewards, computing a
best response is NP-complete.

5 Welfare Maximization
A central planner would want to find a schedule that maxi-
mizes the welfare, i.e., the most profitable services in T acti-
vated for the longest amount of time.
Problem: ISG WELFARE.
Instance: An ISG ((T1, . . . , Tk), G, r) and an integer w.
Question: Is there a π such that

∑k
i=1Ri(π) ≥ w?

Intuitively, it might seem desirable to design schedules
where no service has to wait for its activation after it has
been deployed. We call such schedule conflict-free. For uni-
form rewards, if a conflict-free schedule exists then every
welfare-maximizing schedule obviously has to be conflict-
free. A similar statement holds for single-player games by
the construction of π∗i in Lemma 1 (proof omitted).
Theorem 2. For one player and general rewards, every
welfare-maximizing schedule is a conflict-free schedule.
However, this property does not hold in the case of more than
one player and general rewards. This can be seen by consid-
ering Example 1 and making all other services dependent on
π1’s service with reward 10. Then, any conflict-free schedule
will yield welfare 319 while the welfare-maximizing sched-
ule is 417, yielding the following theorem:
Theorem 3. For multiple players and general rewards, even
if a conflict-free schedule exists, the welfare-maximizing
schedule(s) might not be conflict-free.



Turning to computational complexity, we observe that for
one player welfare maximization is equivalent to finding a
best response, hence with Theorem 1 we get the following.

Corollary 2. For uniform rewards, ISG WELFARE can be
solved in polynomial time for a single player.

However, when we either increase the number of players
(Thm. 4) or relax the restriction of uniform rewards (Thm. 5),
the problem is NP-hard for surprisingly restricted cases.

Theorem 4. ISG WELFARE is NP-complete, even when the
rewards are uniform and each player has two services.

Proof. The problem is in NP since we can efficiently compute
the welfare of a given schedule. For NP-hardness, we reduce
from MIN 2SAT [Kohli et al., 1994] which asks: Given a
2CNF formula F where each clause contains exactly two lit-
erals, and an integer k, is there an assignment to the variables
of F such that at most k clauses are satisfied?

For each variable x in F , create a player Px with services
Tx = {x,¬x}. For each clause c in F , create a player Pc

with services Tc = {c1, c2}. For each clause c = (`1 ∨ `2),
the precedence graph contains (c1, c2), (`1, c1), and (`2, c1).
Rewards are uniform, and we set w = 3n+ 3m− k, where n
and m are the number of variables and clauses of F .

It remains to prove that F has an assignment satisfying at
most k clauses if and only if the ISG has a schedule generat-
ing a reward of at least w. For the forward direction, suppose
F has an assignment α : var(F ) → {0, 1} satisfying at most
k clauses. Consider the schedule where, for each variable x,
the player Px schedules first the literal of x that is set to false
by α, i.e., x is scheduled before ¬x iff α(x) = 0. Addition-
ally, for each clause c, the service c1 is scheduled before c2.
This schedule generates a reward of 3 for each variable: a re-
ward of 1 at the first time step and a reward of 2 at the second
time step. For a satisfied clause c, the schedule generates a
reward of 2: at the first time step no reward is generated since
the literal satisfying the clause is scheduled at the second time
step and there is an arc from that literal to c1, and a reward
of 2 is generated at the second time step. For an unsatisfied
clause c, the schedule generates a reward of 3: since neither
literal satisfies the clause, both literals are scheduled at the
first time step. Thus, the utility generated for this schedule is
at least 3n+ 3m− k.

For the reverse direction, let π be a schedule generating a
reward of at least w. Consider the assignment α : var(F ) →
{0, 1} with α(x) = 0 iff player Px schedules x at the first
time step. Note that at the second time step, each player
generates a reward of 2. Also, each player corresponding to
a variable generates an additional reward of 1 at the first
time step since his services have in-degree 0. So, at least
3n+3m−k− (3n+2m) = m−k additional clause players
generate a reward of 1 at the first time step. But, for each such
clause c, c1 is scheduled before c2 and both literals occurring
in c are scheduled at the first time step, which means that the
assignment α sets these literals to false. Therefore, α does not
satisfy c. We conclude that α satisfies at most k clauses.

Theorem 5. For general rewards, ISG WELFARE is NP-
complete even for a single player.

Figure 1: Mean runtime of the ILP over 1,000 random ISG
instances varying the number of players, services, and re-
ward type; error bars represent one standard deviation (σ).
The solid lines are instances with general rewards, the dashed
lines are instances with uniform rewards. The plot is semi-
logarithmic, so a straight line represents an exponential in-
crease in time. For the general rewards case, error bars are
not included for clarity; for |Ti| ∈ {10, 30, 50} the numbers
are small, σ = 30 seconds in the worst case, however, for 70
services and 10 players this balloons to 200 seconds.

The proof, omitted for space, is a reduction from the NP-hard
problem SINGLE MACHINE WEIGHTED COMPLETION TIME
[Lenstra and Rinnooy Kan, 1978]. It relies on Theorem 2 and
an adjustment of rewards.

5.1 Integer Programming Formulation
While the general problem of finding a welfare maximiz-
ing schedule for an ISG instance is computationally hard, it
may still be solvable for instances of moderate size. The ISG
WELFARE problem admits a natural integer linear program-
ming (ILP) formulation. For each service v ∈ T and time step
t ∈ [q], we introduce two binary decision variables av,t and
sv,t. Let sv,t = 1 if and only if service v is scheduled at time
t, and av,t = 1 if and only if service v is active at time t.

max
∑

v∈T
∑q

t=1 av,t · r(v)
s.t.

∑q
t=1 sv,t = 1 ∀v ∈ T∑

v∈Ti
sv,t = 1 ∀i ∈ [k],∀t ∈ [q]

av,t ≤
∑t

t′=1 sv,t′ ∀v ∈ T, ∀t ∈ [q]

av,t ≤ aw,t ∀(w, v) ∈ E,∀t ∈ [q]

We implemented the ILP and solved 1000 randomly gen-
erated instances where (a) general rewards are drawn from
[50,100] and (b) rewards are uniform. The dependency graphs
are generated by first randomly permuting the list of all ser-
vices; then for each service i, drawing a random number of
child services c ∈ {0, 1, 2} and adding edge (i, i + c) with
probability 0.5. Increasing the number/likelihood of depen-
dencies by increasing the potential number of children or
increasing the connection probability significantly increases



runtime. Figure 1 shows the results for different parameters
using Gurobi 6.5 on a computer equipped with an 2.0 GHz
Intel Xeon E5405 CPU with 4 GB of RAM. The results sug-
gest that, despite worst case hardness, the running times re-
main feasible, at worst ≈ 600s, for practically relevant prob-
lem sizes: up to 10 players with 70 services each.

6 Nash Dynamics and Equilibria
We now turn to the situation where players may respond to
each other’s schedule changes. This is an important question
for game theoretic analyses as it allows us to see which states
leave no incentives for self-interested players to deviate; and
what can happen when players are continually responding
to the moves of one another. An important first question is
whether a sequence of best responses terminates.

Theorem 6. For ISGs with uniform rewards, best responses
can cycle.

Proof. Consider the following example depicting a sequence
of best responses. Starting with the lower right schedule πD
we move to the upper left schedule πA where Player 2 has
changed his schedule in a best response to πD. We then read
left to right, top to bottom, to end up back at πD.

πA
1 : c a d b

πA
2 : d a c b

πA
2 response to πD

1
R(πA

1 ) = 8, R(πA
2 ) = 10

πB
1 : d b c a

πB
2 : d a c b

πB
1 response to πA

2
R(πB

1 ) = 10, R(πB
2 ) = 8

πC
1 : d b c a

πC
2 : c d b a

πC
2 response to πB

1
R(πC

1 ) = 9, R(πC
2 ) = 10

πD
1 : c a d b

πD
2 : c d b a

πD
1 response to πC

2
R(πD

1 ) = 10, R(πD
2 ) = 9

6.1 ISGs with Uniform Rewards
A schedule π is in pure Nash equilibrium (PNE) if no player
can obtain strictly more utility by unilaterally changing his
own schedule; formally, Ri(π−i, π) ≥ Ri(π−i, π

′
i) for all

players i and all schedules π′i of player i. For instance, note
that the above example, despite having a sequence of best re-
sponses that cycle, does admit the PNE depicted below:

πA
1 : a b c d

πA
2 : a b c d

Questions of existence and computation of PNEs are funda-
mental to a game theoretic analysis as a PNE schedule is sta-
ble with respect to selfish players who may try to unilaterally
increase their utility by playing a different schedule.

Theorem 7. Any ISG with uniform rewards admits a pure
Nash equilibrium which can be computed in polynomial time.

Proof (some details omitted). We iteratively construct a
schedule such that every player’s schedule is a best response.

Let N−i (v) := (N−G (v) ∪ {v}) ∩ Ti denote the closed in-
neighborhood of service v under player i’s control, T (t)

i the
set of services of player i already scheduled before iteration t
and α(t)

i := |T (t)
i |. In every iteration, we will choose a service

and schedule it together with all remaining services that it
depends on. This means that for a service v ∈ T

(t)
i , a(v) is

well-defined during iteration t. We can therefore define

η̄
(t)
i (v) :=

{
maxw∈N−i (v) a(w), N−i (v) \ T (t)

i = ∅
α
(t)
i + |N−i (v) \ T (t)

i |, else

Now, η̄(t)(v) := maxi∈N η̄
(t)
i (v) represents a tight lower

bound for a(v) in any schedule which is a “completion” of
the partial schedule from iteration t (achieved if v and all pre-
requisites are scheduled immediately).

Similar to Theorem 1, it can be verified that player i’s
schedule πi is a best response if for every iteration t and
player i, the condition (1) from Lemma 1 holds for all ser-
vices v, w ∈ T

(t)
i and if v ∈ T

(t)
i \ T (t−1)

i , then η̄(t−1)(v)

is minimal among all services from the set Ti \ T (t−1)
i . Fur-

thermore, for every iteration t and services v ∈ Ti \ T (t)
i and

w ∈ T (t)
i , we show that (v, w) /∈ Ei and η̄(t)(w) ≤ η̄(t)(v).

In iteration t, we proceed in the following way: Choose
a service v∗ that minimizes η̄(t) over all services not yet
scheduled and that has no incoming edges from services be-
longing to the same player. Such a service must exist, as if
(w, v∗) ∈ E for some service w, then η̄(t)(w) ≤ η̄(t)(v∗).
Let i be the player such that v∗ ∈ Ti.

Assuming that the above conditions are satisfied for itera-
tion t, we can now show that they also hold for iteration t+1.
The described procedure hence constructs a pure Nash equi-
librium for the given game in time polynomial in |T |.

As every player strives to activate his services as early as
possible, which is also in the interest of other players whose
services depend on them, one may think that the schedule
that maximizes welfare is always a PNE. However, this is not
the case. The ratio of the maximum welfare to the maximum
welfare in a PNE is called the price of stability. The following
theorem shows that this ratio may be strictly greater than 1.
Theorem 8. Even for uniform rewards, a welfare-maximizing
schedule is not necessarily a pure Nash equilibrium.

Proof. Consider the following example.

π1: 1 1 1

π2: 1 1 1

π3: 1 1 1

π4: 1 1 1

The schedule shown is not a Nash equilibrium: if Player 2
shifts the last service to the first slot, he increases his reward
by 1. In fact, any schedule that is a PNE must have Player
2’s last service (in π2 as shown) in the first slot as both other



services, depending (by transitivity) on the two services of
Player 1 cannot activate before the second time step. Hence,
one of the remaining two services of Player 2 (the two with
dependencies), that other services depend on, will only be de-
ployed in the last time step. This implies that in any schedule
that is a Nash equilibrium, the two services of both Players 3
and 4 that depend on Player 2’s services will not activate be-
fore the last time step, either. Hence, Players 3 and 4 cannot
achieve a reward higher than 3 ·1+2 ·0+1 ·(1+1) = 5 each.
Even if both other players receive the maximal reward of 6,
then the welfare in any Nash equilibrium schedule cannot ex-
ceed 22. On the other hand, the schedule shown achieves a
total welfare of 23. Hence, no welfare maximizing schedule
can be a Nash equilibrium.

Since there may be more than one PNE profile in ISGs with
uniform rewards, it is natural to ask how bad the price of an-
archy, the ratio of the maximum welfare schedule to the max-
imum welfare in a PNE, can become.

Theorem 9. The price of anarchy of ISGs with uniform re-
wards is ≥ k(q+1)/(q+2k−1) with k players, q services each.

Proof. Consider the following example.

π1: 1 1 . . . 1

π2: 1 1 . . . 1

...
πk: 1 1 . . . 1

The worst PNE is obtained (as shown) by scheduling
player 1’s service, on which all others depend, at the end;
as opposed to the PNE achieved when this service is at the
beginning, which is welfare-maximizing. The ratio between
the welfares is k·q(q+1)/2

q(q+1)/2+(k−1)q = k(q+1)
q+2k−1 .

If we fix the number of players k, the ratio is bounded by
limq→∞ k(q+1)/(q+2k−1) = k. Similarly, when fixing the
number of services q, then limk→∞ k(q+ 1)/(q+ 2k− 1) =
(q + 1)/2. This motivates the following theorem.

Theorem 10. The price of anarchy of ISG with uniform re-
wards is at most (q + 1)/2.

Proof. The worst PNE profile cannot be worse than the
schedule in which all services activate at the last time step
q, which obtains welfare k · q. The maximum-welfare sched-
ule cannot be better than a schedule in a game without any
precedence constraints, which obtains welfare k · q(q+ 1)/2.
Together, we have: PoA ≤ kq(q+1)/2

kq = q+1
2 .

6.2 ISGs with General Rewards
Our results for the general setting are not as positive as our
results for the uniform rewards setting. We show that for the
general rewards setting, an ISG with two players does not
always admit a pure Nash equilibrium.

Theorem 11. An ISG with two players and general rewards
does not always admit a pure Nash equilibrium.

Proof. Consider the the following instance.

π1: 1 4 3 2

π2: 2 4 1 3

Assume this game admits a PNE, any best response of Player
1 must satisfy that service 4, being the highest reward ser-
vice, is scheduled immediately after service 1. Therefore, any
possible best response of Player 1 has to adopt one of the
following schedule configurations: (i) π1 ∈ (1, 4, ∗, ∗), (ii)
π1 ∈ (∗, 1, 4, ∗) or (iii) π1 ∈ (∗, ∗, 1, 4).

In a similar way, service 4 of Player 2, for any best re-
sponse of Player 2, must be scheduled as soon as possi-
ble. These observations narrow the number of possible PNE
configurations to three cases: Case (i) Player’s 2 best re-
sponse, given any schedule of the form π1 ∈ (1, 4, ∗, ∗) is
π2 = (2, 4, 1, 3). However, such a schedule triggers a best
response for Player 1 of π1 = (3, 1, 4, 2), which take us to
case (ii). Case (ii) Player’s 2 best response, given any sched-
ule of the form π1 ∈ (∗, 1, 4, ∗) is π2 = (1, 3, 4, 2). How-
ever, such a schedule triggers a best response for Player 1
of π1 = (1, 4, 2, 3), which is an instance of case (i). This
leads to a cycle of best responses. Case (iii) Player’s 2 best
response, given any schedule of the form π1 ∈ (∗, ∗, 1, 4)
is π2 ∈ {(2, 1, 3, 4), (1, 3, 2, 4)}. However, such schedules
trigger a best response for Player 1 of π1 = (3, 1, 4, 2) if
π2 = (2, 1, 3, 4), or π1 = (1, 4, 3, 2) in the other case. Both
schedules being an instance of case (ii) or (i), respectively.
Therefore, for any schedule π1, there is no schedule π2, such
that (π1, π2) is a PNE.

We conjecture that the example in Theorem 11 is minimal
with respect to the number of services and dependencies. We
can embed this example into a 3SAT reduction to show that
checking the existence of a PNE is NP-hard.
Theorem 12. Deciding whether an ISG with general rewards
admits a PNE schedule is NP-hard, even when each player
has at most 4 services.

7 Conclusions
We have introduced a class of interdependent scheduling
games that are motivated by large-scale infrastructure restora-
tion and humanitarian logistics; answering many important
questions that arise when the players are independent de-
cision makers, including questions of welfare maximization
and existence of PNEs. An interesting technical open prob-
lem is to determine the complexity of welfare maximization
when the number of players is bounded. More broadly, there
are a number of promising directions for future work includ-
ing the extension of the model to include cyclic interdepen-
dencies [Coffrin et al., 2012] or considering other types of
manipulation such as adding services or misreporting utilities
[Zlotkin and Rosenschein, 1993]. Also note that approxima-
tion algorithms for traditional scheduling settings (with hard
dependencies and non-accruing rewards) cannot be directly
applied to our model. Hence, another possible avenue of re-
search would be a study of fixed parameter tractability and
approximation algorithms for ISGs.
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