Preferences Single-Peaked on a Circle

Martin Lackner and Dominik Peters

Department of Computer Science, University of Oxford, UK

Definition

Young's rule

- Young's voting rule selects those alternatives that can be made a Condorcet winner by *deleting* a minimum number of voters.
- It is NP-hard to calculate in general, but *poly-time* for SPOC.
- We can efficiently calculate the Young score of any

A linear preference order is single-peaked on a circle C if the circle can be cut at some point so that the preference order is single-peaked on the resulting line.

Equivalently, every top-initial segment of each vote forms an interval of the circle.

Examples and Motivation

given alternative when the input profile is SPOC.

Majority Relation & Kemeny

- The Condorcet cycle xyz, yzx, zxy is SPOC, so SPOC profile need not admit a Condorcet winner.
- In fact, SPOC does not guarantee anything at all about the majority relation: McGarvey's theorem can be proven using only SPOC profiles.
- Recall that Kemeny's rank aggregation rule selects a consensus ranking of minimum total Kendall-tau distance to the input rankings.
- Kemeny remains NP-hard to calculate for SPOC profiles by McGarvey's theorem for SPOC.

Axiomatics & Impossibilities

• Median rule cannot be extended to SPOC.

Agreeing on a meeting time on the 24 hour clock.

Scheduling a video call

across time zones.

Facility location on a circle, for example an airport on the boundary of a city.

Mix single-peaked and -caved votes on the same axis, allowing extreme opinions.

- Gibbard-Satterthwaite can still be proven: There exists no non-imposing non-dictatorial strategy proof voting rule even on SPOC profiles.
- Moulin's no-show paradox can also be proven.

Multiwinner Rules

- Several NP-hard multiwinner voting rules become easy for profiles that are SPOC.
- This includes Chamberlin-Courant, Proportional Approval Voting (PAV), and OWA-based rules.
- The proof proceeds by encoding these rules as integer programs (ILPs) which become totally unimodular and thus polynomially solvable for SPOC input after some algebraic manipulation.

Comparison to Other Concepts

Recognition Algorithm

There exists an O(mn) time algorithm that given a preference profile decides whether it is single-peaked on some circle, and if so returns a suitable circle C.

This algorithm is *certifying*: if the input profile is not SPOC, it returns one of finitely many forbidden subprofiles.

	SINGLE PEAKED	SINGLE PEAKED ON A TREE	SINGLE PEAKED ON A CIRCLE
AXIOMATIC PROPERTIES	$\bigoplus \bigoplus$	\bigoplus	$\Theta \Theta$
ALGORITHMIC USEFULNESS	$\oplus \oplus$	Θ	\bigoplus