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Definition 

A linear preference order is single-peaked 
on a circle C if the circle can be cut at 

some point so that the preference order is 
single-peaked on the resulting line. 

Equivalently, every top-initial segment of 
each vote forms an interval of the circle. 

Examples and Motivation 

Recognition Algorithm 
There exists an O(mn) time algorithm that given a 
preference profile decides whether it is single-peaked 
on some circle, and if so returns a suitable circle C. 
This algorithm is certifying: if the input profile is not 
SPOC, it returns one of finitely many forbidden sub-
profiles. 

Young’s rule 
• Young’s voting rule selects those alternatives that 

can be made a Condorcet winner by deleting a 
minimum number of voters.  

• It is NP-hard to calculate in general, but poly-time 
for SPOC. 

• We can efficiently calculate the Young score of any 
given alternative when the input profile is SPOC. 

Majority Relation & Kemeny 
• The Condorcet cycle xyz, yzx, zxy is SPOC, so 

SPOC profile need not admit a Condorcet winner. 
• In fact, SPOC does not guarantee anything at all 

about the majority relation: McGarvey’s theorem  
can be proven using only SPOC profiles. 

• Recall that Kemeny’s rank aggregation rule selects 
a consensus ranking of minimum total Kendall-tau 
distance to the input rankings. 

• Kemeny remains NP-hard to calculate for SPOC 
profiles by McGarvey’s theorem for SPOC. 

Axiomatics & Impossibilities 
• Median rule cannot be extended to SPOC. 
• Gibbard-Satterthwaite can still be proven: 

There exists no non-imposing non-dictatorial strat-
egy proof voting rule even on SPOC profiles. 

• Moulin’s no-show paradox can also be proven. 

Multiwinner Rules 
• Several NP-hard multiwinner voting rules become 

easy for profiles that are SPOC. 
• This includes Chamberlin-Courant, Proportional 

Approval Voting (PAV), and OWA-based rules. 
• The proof proceeds by encoding these rules as in-

teger programs (ILPs) which become totally uni-
modular and thus polynomially solvable for SPOC 
input after some algebraic manipulation. 

Comparison to Other Concepts
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Abstract

We introduce the domain of preferences that are single-
peaked on a circle, which is a generalization of the well-
studied single-peaked domain. This preference restric-
tion is useful, e.g., for scheduling decisions, and for
one-dimensional decisions in the presence of extrem-
ist preferences. We give a fast recognition algorithm
of this domain, provide a characterisation by finitely
many forbidden subprofiles, and show that many popular
single- and multi-winner voting rules are polynomial-
time computable on this domain. In contrast, Kemeny’s
rule remains hard to evaluate, and several impossibility
results from social choice theory can be proved using
only profiles that are single-peaked on a circle.

1 Introduction
A central problem in the study of multi-agent systems is the
aggregation of agents’ preferences in order to make group
decisions. Impossibility theorems and computational hard-
ness result make this problem a hard one to solve. However,
a successful line of research going back to Black’s (1948)
seminal article has managed to circumvent many problems
in (computational) social choice for the special case when
agents’ preferences are single-peaked. Under this preference
restriction, we assume that agents have preferences over the
possible values of a one-dimensional quantity such as the tim-
ing of a deadline, a tax rate, a thermostat setting, or the price
of a new product. A preference ordering is single-peaked if
an agent has a certain most-preferred value of the quantity
and derives less and less satisfaction from values that are
further away from the subjective optimum. Another popular
application of this setting is in political elections, where it is
often held that candidates can be ordered on a left-to-right
spectrum making the voters’ preferences single-peaked.

Preference profiles that consist solely of single-peaked
preference orderings have attractive properties, both algorith-
mically and in terms of their social choice behaviour. For
example, winner determination problems that are compu-
tationally hard in the general case tend to be easy when
restricted to single-peaked profiles (Brandt et al. 2015;
Betzler, Slinko, and Uhlmann 2013), and the single-peaked
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Figure 1: Example of preferences single-peaked on a circle.

domain admits a strategy-proof voting rule and also guaran-
tees transitivity of the majority relation (Moulin 1991).

The usefulness of results of this type is limited by the
extent to which profiles in practice actually happen to be
single-peaked. One way of dealing with this is to con-
sider less restrictive generalisations of single-peakedness.
Maybe the structure of the alternative space is not quite one-
dimensional, and in this case it might be useful to consider
preferences that are single-peaked on a tree (Demange 1982).
This domain is notably larger, yet still retains many desir-
able properties in social choice terms; however, its algorith-
mic usefulness is more mixed (Yu, Chan, and Elkind 2013;
Peters and Elkind 2016).

In this paper, we identify a new preference restrictions:
being single-peaked on a circle. Here we assume that alterna-
tives can be placed on a circle, with agents’ preferences again
being decreasing on both sides of their peaks. See Figure 1
for some example shapes that ‘preference curves’ might have
in this setting; higher points are more preferred. Note that
the circle wraps around, and so h and a are adjacent. Intu-
itively, a preference profile is single-peaked on a circle if, for
every agent, we can ‘cut’ the cycle once so that the agent’s
preferences are single-peaked on the resulting line. Crucially,
the location of the cutting point may differ for each agent.

The aim of this paper is to explore this new preference do-
main in detail. We will find that this domain is algorithmically
useful (it often allows for efficient winner determination), but
it performs less convincingly in terms of axiomatic properties
(since voting paradoxes still occur and impossibility results
can still be proven). Interestingly, this is precisely opposite

Agreeing on a meeting time 
on the 24 hour clock. 

Facility location on a circle, 
for example an airport on 
the boundary of a city. 

Scheduling a video call 
across time zones. 

Mix single-peaked and -caved 
votes on the same axis, al-
lowing extreme opinions. 

to how the results turned out for single-peakedness on trees.
Motivating Examples. There are many practical scenarios
where we might expect preferences to be single-peaked on
a circle. This is even the case when, on first sight, there
seems to be no circle anywhere. Indeed, suppose that al-
ternatives are naturally ordered on a line; we may pretend
this line is a circle by joining up its endpoints. Of course,
every order that is single-peaked on the line is also single-
peaked on the circle. But crucially, the reverse of such an
order, now single-caved on the line, is still single-peaked
on the same circle. Thus, our new preference restriction
allows us to combine single-peaked and single-caved votes.
One interpretation is that this move al-
lows us to accommodate “extremists”.
For example, while most people have a
sweet spot somewhere on the left-right
political axis, some people might dis-
like centrist options and prefer the extremes. When planning
a vacation, some might have an optimal climate in mind,
while others like it both very cold (skiing) and very hot
(beaches), but dislike compromises (England).

Other examples of alternative spaces are more explicitly
cyclic. Consider, for example, finding a good time for a
daily event (such as a day or night shift, or a meeting, or
the timing of backups) where possibilities are arranged in a
24 hour cycle. A similar structure exists when scheduling
an international phone call; here, different time zones are
arranged along the equator, and lead to cyclic preferences.

But perhaps the most appealing example of preferences
that can be expected to be single-peaked on a circle come
from problems inspired by facility location. Rather many
structures have a boundary that is (roughly) isomorphic to
a cycle, including most cities and countries. The problem
of deciding where to locate a new airport for a city would
be one example, since airports are usually positioned on the
boundary. Similarly, where should a company build new
office space? To which coastal region should a family move?
Where do we want to sit in a football stadium? Another
plausible application could be inspired by security concerns,
if we consider the placement of border security checkpoints.
Contributions. We formally define single-peakedness on
circles and immediately extend this definition to preferences
with ties, and to dichotomous (approval) preferences.

We show that it is possible to efficiently recognise whether
a given preference profile is single-peaked on some circle,
and if so return a suitable circle. For the case of preferences
without ties, we give a recognition algorithm that runs in
linear time, matching the performance in the case for the line.

We characterise the domain of preferences single-peaked
on a circle through a list of finitely many forbidden subpro-
files with 2 voters and 5 alternatives, and with 3 voters and 4
alternatives. The proof of this characterisation implies that
our linear-time recognition algorithm can certify its negative
answers by exhibiting a forbidden subprofile.

While single-peakedness on a line serves as a way to cir-
cumvent many impossibility results in social choice, we show
that such impossibilities (including the Gibbard-Satterthwaite
theorem) can still be proven when preferences are allowed to

be single-peaked on a circle.
We then study the algorithmic properties of our new pref-

erence extension. We show that Young’s voting rule (and
also Young scores) can be efficiently computed if preferences
are single-peaked on a circle; this algorithm also improves
upon the state-of-the-art when it comes to preferences single-
peaked on a line. We also show that several multi-winner
voting rules are efficiently computable in our restricted case,
including the Chamberlin–Courant rule and Proportional Ap-
proval Voting (PAV). On the other hand, we show that McGar-
vey’s theorem (McGarvey 1953) can be proven using only
preferences single-peaked on a circle; thus, Kemeny’s rule
remains NP-hard to evalutate even in this setting.

2 Definition
Let A be a finite set of alternatives (or candidates). A weak
order is a binary relation over A which is complete and transi-
tive. A linear order is a weak order that is antisymmetric, and
so does not allow preference ties; a strict linear order is the
irreflexive part of a linear order. A profile P = (v1, . . . , vn)
over A is a list of weak orders over A. The elements of
N = {1, . . . , n} are called voters, and we associate voter
i 2 N with the order v

i

, which we call the vote of voter i.
For convenience, we write a <

i

b whenever (a, b) 2 v
i

, i.e.,
when voter i weakly prefers alternative a to alternative b, and
we use �

i

for the strict part of <
i

. We will always write m
for the number of alternatives and n for the number of voters.
If v

i

is a linear order, we write top(v
i

) for i’s most-preferred
alternative.

An axis C is a strict linear order of the alternatives. We
usually think of an axis as describing the underlying one-
dimensional structure of the alternative space. A linear order
v
i

is single-peaked with respect to the axis C if for any pair of
alternatives a, b 2 A with top(v

i

)C bC a or aC bC top(v
i

)

it holds that b �
i

a. Let us also give another, equivalent
definition. An interval I ✓ A of an axis C is any set such
that if a, c 2 I and a C b C c, then b 2 I . Then a vote
v
i

is single-peaked with respect to the axis C if and only if
for every c 2 A, the top-initial segment {a 2 A : a �

i

c}
is an interval of C. This definition in terms of intervals
immediately gives a definition of the single-peaked property
for weak orders as well. There are several possible definitions
of single-peakedness for weak orders; the one we use here
is often referred to as possible single-peakedness (Lackner
2014), since it is equivalent to saying that there exists a
linearisation of the weak order which is single-peaked.

We say that two axes C and C0 are cyclically equivalent if
there is l 2 [m] such that we can write a1Ca2Ca3C· · ·Ca

m

and a
l

C0 a
l+1 C0 · · · C0 a

m

C0 a1 C0 · · · C0 a
l�1. For an

axis C, we then define the circle C(C) of C to be the set of
axes cyclically equivalent to C. Any set C of axes that can
be written as C = C(C) for some C we will call a circle.
Thus,“cutting” a circle C at a point yields an axis C 2 C.
Definition. Let C be a circle. A vote v

i

is single-peaked on
C if there is an axis C 2 C such that v

i

is single-peaked with
respect to C. A preference profile P is single-peaked on a
circle (SPOC) if there exists a circle C such that every vote
v
i

2 P is single-peaked on C.
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ON A TREE

SINGLE
PEAKED

ON A CIRCLE

AXIOMATIC
PROPERTIES ⊕⊕ ⊕ ⊖⊖

ALGORITHMIC
USEFULNESS ⊕⊕ ⊖ ⊕

Again let us state another equivalent defini-
tion. An interval I ✓ A of a circle C is a set
that is an interval of one of the axes C 2 C of
the circle. Then a vote is single-peaked on a
circle C if and only if each top-initial segment
{a 2 A : a �

i

c} is an interval of C. Note that the comple-
ment A \ I of an interval I of C is again an interval. Thus,
an order is single-peaked on C if and only if the reverse of
the order is also single-peaked on C.

3 Recognition Algorithms
In this section we design algorithms that decide whether a
given profile is single-peaked on some circle, and if so, return
a suitable circle C.

A matrix M = (a
ij

) with a
ij

2 {0, 1} has the consecutive
ones property if the columns of M can be put into a linear
order C so that for every row of M , the columns with 1-
entries form an interval of C. The matrix M has the circular
ones property if its columns can be arranged in a circle C so
that the 1-entries of each row form an interval of C. Given our
definitions in terms of intervals above, it is straightforward
to translate a profile P of weak orders into an mn ⇥ m
matrix M so that P is single-peaked [single-peaked on a
circle] if and only if M has the consecutive [circular] ones
property (Bartholdi III and Trick 1986): Take one column for
each alternative, and one row for every top-initial segment
of every voter in P ; the row is the incidence vector of the
segment. Since it is possible to check in linear time whether
a matrix A has the consecutive or circular ones property
(Booth and Lueker 1976), this gives us an O(m2n) algorithm
to recognise profiles that are single-peaked on a circle.

In the remainder of this section, we design a more explicit
algorithm that runs in time O(mn) when the input profile
consists of linear orders.1

Suppose P = (v1, . . . , vn) is a profile of linear orders over
A, and fix some alternative z 2 A. We will build another
profile P 0 of 2n weak orders by slicing each vote v

i

into an
upper and a lower part. The upper part ranks all alternatives
a such that a �

i

z in order of �
i

, and puts all remaining
alternatives into a least-preferred indifference class. The
lower part ranks all alternatives a such that z �

i

a in reverse
order of �

i

, and again puts all remaining alternatives into a
least-preferred indifference class.
Proposition 1. Suppose a profile P 0 of weak orders is ob-
tained by slicing each vote of a profile P of linear orders.
Then P is SPOC if and only if the profile P 0 is single-peaked.

Proof. Suppose P is SPOC on C, and let C 2 C be an axis
starting in z. Note that all top-initial segments of votes in P 0

do not contain z and are intervals of C. Thus, they must be
intervals of C, and so P 0 is single-peaked with respect to C.

Suppose P 0 is single-peaked with respect to C. We show
that P is SPOC on C(C). Take a top-initial segment S of a
vote v

i

in P . If z 62 S, then S is also a top-initial segment
of a vote in P 0 (namely the upper part of v

i

). Thus, S is an
interval of C and so an interval of C. If however z 2 S, then

1Actually, the algorithm works whenever P contains at least one
linear order.

the complement A \ S is a top-initial segment of a vote in P 0

(namely the lower part of v
i

), hence an interval of C, and so
A \ S is an interval of C. But the complement of an interval
of a circle is again an interval, and so S is an interval of C.
Hence P is SPOC.

Thus, we can use an algorithm that decides whether a
profile of weak orders is single-peaked to decide whether
a profile of linear orders is SPOC. Next, note that if we
select z 2 A to be the alternative that is ranked last by v1,
then the resulting profile P 0 contains a linear order (namely
the upper part of v1). Lackner (2014) has given a O(mn)
time algorithm that decides whether a profile of weak orders
containing at least one linear order is single-peaked. Since P 0

can be constructed from P in time O(mn), by Proposition 1,
we obtain the following.
Theorem 2. There is an O(mn) time algorithm that decides
whether a profile of linear orders is single-peaked on a circle.

4 Characterisation by Forbidden Subprofiles
Ballester and Haeringer (2011) have characterised the do-
main of single-peaked profiles of linear orders by a finite
collection of forbidden subprofiles. More precisely, they
gave a forbidden profile with 3 voters and 3 alternatives,
and several forbidden profiles with 2 voters and 4 alter-
natives such that a profile P is not single-peaked if and
only if it is possible to obtain one of their forbidden pro-
files from P by deleting and reordering voters, and delet-
ing and renaming alternatives. A similar characterisation
exists for single-crossing profiles (Bredereck, Chen, and
Woeginger 2013), but no finite characterisation exists for
d-Euclidean profiles (Chen, Pruhs, and Woeginger 2015;
Peters 2016a).

Here, we prove that a profile is SPOC unless it contains
certain forbidden subprofiles with 2 voters and 5 alternatives
and with 3 voters and 4 alternatives. Let us write B �

i

C to
mean that b �

i

c for all b 2 C and c 2 C.
Theorem 3. A profile P of linear orders on A is not SPOC
if and only if one of the following three cases occurs.

1. There are distinct alternatives a, b, c, d, e 2 A and voters
v
i

and v
j

in P such that

{a, b} �
i

{c} �
i

{d, e},
{a, e} �

j

{c} �
j

{d, b}.

2. There are distinct alternatives a, b, c, d 2 A and voters v
i

,
v
j

, and v
k

in P such that

{a, b} �
i

{c, d}
{a, c} �

j

{b, d}
{a, d} �

k

{b, c}.

3. There are distinct alternatives a, b, c, d 2 A and voters v
i

,
v
j

, and v
k

in P such that

{a, b} �
i

{c, d}
{b, c} �

j

{a, d}
{c, a} �

k

{b, d}.
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