
Preferences Single-Peaked on Nice Trees
Dominik Peters and Edith Elkind

Department of Computer Science, University of Oxford, UK

Single-Peaked on a Tree
introduced by Demange (1982)

 more general than single-peaked on a line
Condorcet winner guaranteed to exist
allows faster algorithms for voting problems
efficiently recognisable

Trick’s Recognition Algorithm
• Trick (1987) gives an O(nm2) algorithm for checking

if a preference profile is single-peaked on a tree.
• If yes, it returns some tree that works.

Key insight behind algorithm: if an alternative appears in last
position in some voter’s preference, then the alternative must be
a leaf (similar to standard single-peaked). Identify such a leaf al-
ternative and attach it to an arbitrarily chosen other alternative,
but without violating single-peakedness. Repeat.

• Some algorithms for voting problems that exploit
the tree structure of preferences work better if the
tree is “nice”

• For example, nice could mean having few leaves, or
low degrees, or small pathwidth.

Finding Nice Trees (if possible)
• Question: Can we modify Trick’s algorithm to re-
turn a nice tree if that’s possible?

• Answer: Yes, by keeping track of the decisions that
the algorithm made.

• In fact, we can concisely represent all trees on which a given
profile is single-peaked using the “attachment digraph”:

Instructions for use: select one outgoing arc for each alternative, forget
orientations, and we obtain a tree on which the profile {kfedghcijba,
dcbeafghijk, gfhiedcbajk} is single-peaked. All such trees can be obtained
in this way. Note that the black arcs are forced, and the grey arcs are
‘free’. Crucially, among the grey arcs, the digraph is transitive.

Recognition Algorithms
Theorem. Given a profile V that is single-peaked on a
tree, we can find in polynomial time a suitable tree that
among suitable tree has a minimum number of leaves, a
minimum number of internal vertices, minimum diameter,
minimum max-degree, minimum path-width.
Further, we can decide in polynomial time whether a given
profile is single-peaked on a line, star, caterpillar, lobster,
or on a subdivision of a star.

Theorem. However, it is NP-complete to decide, given a
profile V and an unlabelled tree T with |A| vertices,
whether V is single-peaked on some labelling of T.
Also NP-hard to decide whether single-peaked on a regular tree.

Application: Committee Selection
• The Chamberlin-Courant rule is a popular voting rule for

selecting an “optimal” committee of size k from the m can-
didates in A.

• Optimal committee minimises a misrepresentation function.
• The rule is NP-hard to evaluate in general.
• Yu, Chan, and Elkind (2013) show this problem becomes eas-

ier for preferences single-peaked on a tree with few leaves.
• This paper: also easy for trees with few internal vertices.

Theorem. Given a profile that is single-peaked on a tree
with r internal vertices, we can find a winning committee of
size k under the Chamberlin-Courant rule with Borda misrep-
resentation function in time poly(n, m, (k + 1)r).

Presented at AAAI 2016, Phoenix, Arizona

Definitions. Let A be an m-element set of alternatives, and
let V be an n-element set (or profile) of votes, i.e., strict
preference orders over A. Let T = (A,E) be a tree over A.

V is single-peaked on T iff
V is single-peaked on every path of T.

Equivalently, V is single-peaked on T if for every voter i
and all numbers k, the set of i’s k most preferred alterna-
tives induces a (connected) subtree of T.

most-preferred alternatives

least-preferred alternative least-preferred
alternative

a

a

b

b

w

w

z

z

Preferences Single-Peaked on Nice Trees

Dominik Peters and Edith Elkind
Department of Computer Science

University of Oxford, UK
{dominik.peters, edith.elkind}@cs.ox.ac.uk

Abstract
Preference profiles that are single-peaked on trees en-
joy desirable properties: they admit a Condorcet winner
(Demange 1982), and there are hard voting problems
that become tractable on this domain (Yu, Chan, and
Elkind 2013). Trick (1989) proposed a polynomial-time
algorithm that finds some tree with respect to which
a given preference profile is single-peaked. However,
some voting problems are only known to be easy for pro-
files that are single-peaked on “nice” trees, and Trick’s
algorithm provides no guarantees on the properties of
the tree that it outputs. To overcome this issue, we build
on the work of Trick and Yu et al. to develop a structural
approach that enables us to compactly represent all trees
with respect to which a given profile is single-peaked.
We show how to use this representation to efficiently find
the “best” tree for a given profile, according to a number
of criteria; for other criteria, we obtain NP-hardness re-
sults. In particular, we show that it is NP-hard to decide
whether an input profile is single-peaked with respect
to a given tree. To demonstrate the applicability of our
framework, we use it to identify a new class of profiles
that admit an efficient algorithm for a popular variant of
the Chamberlin–Courant (1983) rule.

1 Introduction
Preference aggregation is a difficult task when voters’ prefer-
ences may be arbitrary: one has to deal with voting paradoxes
(Arrow 1951) and computationally hard problems (Brandt,
Conitzer, and Endriss 2013). This observation motivates the
study of domain restrictions, i.e., special classes of voters’
preferences that rule out paradoxical outcomes and/or allow
one to circumvent computational hardness results. Perhaps
the most-studied restricted domain is that of single-peaked
preferences (Black 1948). This domain captures profiles
where voters’ preferences are determined by candidates’ po-
sitions on a single issue, and has many desirable properties:
for instance, single-peaked elections always have a Condorcet
winner (a candidate that is preferred to every other candidate
by a majority of voters), admit a non-manipulable voting
rule (Moulin 1991), and allow for an efficient winner deter-
mination algorithm for a popular committee selection rule
(Betzler, Slinko, and Uhlmann 2013).

Copyright c� 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

c

b

a

d e f g

h

i

j

k

Figure 1: The ‘attachment digraph’ computed for the pro-
file {kfedghcijba, dcbeafghijk, gfhiedcbajk} which is single-
peaked on 336 different trees. All of them appear as subtrees
of the above digraph, which can be computed in O(|V | · |C|2)
time. The black edges must appear in any tree; for each free
vertex with gray outgoing arcs, we choose exactly one of
them. The transitivity among the gray edges will be crucial
to our approach.

Demange (1982) introduced a weaker domain restriction,
namely, single-peakedness on a tree. Briefly, a profile is
single-peaked on a tree if candidates can be mapped to the
vertices of some tree so that the restriction of this profile to
every path in this tree is single-peaked. This is a consider-
ably broader domain than that of the single-peaked elections,
which, nevertheless, retains some of the desirable properties
of the latter: profiles that are single-peaked on a tree always
have a Condorcet winner (Demange 1982), and there are
committee selection problems that become easier when pref-
erences are single-peaked on a tree (Yu, Chan, and Elkind
2013). However, some of the algorithms for this domain
require the input profile to be single-peaked on a “nice” tree,
such as a tree with a small number of leaves or a star (Yu,
Chan, and Elkind 2013); indeed, positive results for single-
peaked preferences can also be viewed in this light, as they
require the preferences to be single-peaked on a specific tree,
namely, a line (path).

Now, forcing Trick’s algorithm to output a “nice” tree is
not a trivial task: indeed, this algorithm may output a complex
tree even when the input profile is single-peaked on a line.
Fortunately, there are efficient algorithms for recognizing
when a given profile is single-peaked on a line (Bartholdi and
Trick 1986; Doignon and Falmagne 1994; Escoffier, Lang,
and Öztürk 2008), and Yu, Chan, and Elkind (2013) explain
how to modify Trick’s algorithm so that it outputs a tree

