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n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Condorcet Thm 4 Í È Thm 3 È [22] È [27]
Maximin Thm 1 Í È Thm 1
Kemeny Thm 2 Í È Thm 2

optimistic Thm 5 Í È Thm 6
pessimistic Thm 7 Í È Thm 7

strong SD Thm 9 Í È Thm 9

Possibility Impossibility

Table 1: Bounds on the number of voters for which Condorcet extensions can satisfy participation. Green
cells indicate the existence of a Condorcet extension satisfying participation (for m = 4). Red cells indicate
that no Condorcet extension satisÞes participation (for m > 4).

An alternative x is called Condorcet winner if it wins
against any other alternative in a majority contest, i.e., if
gR (x, y) > 0 for all y ! A \ { x} . Conversely, an alternative
x is a Condorcet loser if gR (x, y) < 0 for all y ! A \ { x} .

Our central object of study are voting rules, i.e., functions
that assigns every preference profile a socially preferred al-
ternative. Thus, a voting rule is a function f : R E( N ) " A .

In this paper, we study voting rules that satisfy
Condorcet-consistency and participation.

Definition 1. A Condorcet extension is a voting rule
that selects the Condorcet winner whenever it exists. Thus,
f is a Condorcet extension if for every preference profile R
that admits a Condorcet winner x, we have f (R) = x. We
say that f is Condorcet-consistent.

Definition 2. A voting rule f satisfies participation if
all voters always weakly prefer voting to not voting, i.e., if
f (R) <i f (R # i ) for all R ! R N and i ! N with N ! E(N ).

Equivalently, participation requires that for all preference
profiles R not including voter j , we have f (R +<j ) <j f (R).

4. MAXIMIN AND KEMENY’S RULE
The proofs of both positive and negative results to come

were obtained through automated techniques that we de-
scribe in Section 5. To become familiar with the kind of
arguments produced in this way, we will now study a more
restricted setting which is of independent interest.

Specifically, let us consider voting rules that select winners
in accordance with the popular maximin and Kemeny rules.
For a preference profile R, an alternative x is a maximin win-
ner if it maximizes miny! A \{ x} gR (x, y); thus, x never gets
defeated too badly in pairwise comparisons. An alternative
x is a Kemeny winner if it is ranked first in some Kemeny
ranking. A Kemeny ranking is a preference relation <K ! R
maximizing agreement with voters’ individual preferences,
i.e., it maximizes the quantity

!
i ! N |<K $ <i |.

We call a voting rule a maximin extension (resp. Kemeny
extension) if it always selects a maximin winner (resp. Ke-
meny winner). Since a Condorcet winner, if it exists, is
always the unique maximin and Kemeny winner of a prefer-
ence profile, any such voting rule is also a Condorcet exten-
sion. We can now prove an easy version of Moulin’s theorem
for these more restricted voting rules.

To this end, we first prove a useful lemma allowing us to
extend impossibility proofs for 4 alternatives to also apply if
there are more than 4 alternatives. Its proof gives a first hint
on how Condorcet-consistency and participation interact.

Lemma 1. Suppose that f is a Condorcet extension satis-
fying participation. Let R be a preference profile and B ! A
a set of bad alternatives such that each voter ranks every
x ! B below every y ! A \ B . Then f (R) /! B .

Proof. By induction on the number of voters |N | in R.
If R consists of a single voter i , then, since f is a Condorcet
extension, f (R) must return i ’s top choice, which is not bad.
If R consists of at least 2 voters, and i ! N , then by partic-
ipation f (R) <i f (R # i ). If f (R) were bad, then so would
be f (R # i ), contradicting the inductive hypothesis.

The following computer-aided proofs, just like the more
complicated proofs to follow, can be understood solely by
carefully examining the corresponding ‘proof diagram’. An
arrow such as R R"+ abcd indicates that profile R" is
obtained from R by adding a voter abcd, and is read as “if
one of the bold green alternatives (here ab) is selected at
R, then one of them is selected at R"” (by participation).
A circled node a indicates a profile admitting Condorcet
winner a, although in the proofs of Theorems 1 and 2, we use
it to refer to maximin and Kemeny winners, respectively.

Theorem 1. There is no maximin extension that satis-
fies participation for m > 4 and n > 7. (For m = 4 and
n 6 6, such a maximin extension exists.)

Proof. Let f be a maximin extension which satisfies par-
ticipation. Consider the following 6-voter profile R:

1 2 2 1
a b c d
b d a c
d c b a
c a d b

R
c

+ abcd

b

+ dcba

Suppose f (R) ! { a, b} . Adding an abcd vote leads to a
weighted tournament in which alternative c is the unique
maximin winner. But this contradicts participation since
the added voter would benefit from abstaining the election.

Symmetrically, if f (R) ! { c, d} , then adding a dcba vote
leads to a weighted tournament in which b is the maximin
winner, again contradicting participation. The symmetry of
the argument is due to an automorphism of R, namely the
relabelling of alternatives according to abcd %"dcba.

If m > 4, we add new bad alternatives x1, x2, . . . , xm # 4 to
the bottom of R and of the additional voters. By Lemma 1,
f chooses from { a, b, c, d} at each step, completing the proof.
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After these people have voted, the voting 
rule chooses alternative a as the winner.

This guy was about to submit his truthful ballot abcd: 
but even though a is his most-preferred outcome,  

the voting rule would suddenly choose b as  
the winner if he were to submit his vote. 

So he is better off staying at home. 

MoulinÕs Theorem  (1988):  
Every Condorcet-consistent voting rule fails participation when there are at least 25 voters and 4 alternatives.

the voting rule must choose the “obvi-
ous” winner if one exists: alternative a 
is a Condorcet winner if it wins by a 
majority against every other alterna-

tive in a pairwise comparison

the “no-show paradox”: there is a 
situation (i.e., a preference profile) 
where a voter is better off abstain-
ing from the election rather than 

voting truthfully.

our key question: is this tight?  
does this paradox occur only with this 

many voters, or does it occur even 
with fewer voters? can we avoid it if 

there are not too many voters?

We use computer-assisted proof techniques : 
- Restrict to Þnite instance (say 12 voters, 4 alternatives) 
- Encode axioms as clauses in a CNF formula 
- Use a SAT solver: satisfiable    →  good voting rule 
                           unsatisfiable →  impossibility result 
- Use MUS extraction to find a human-readable  proof

Felix Brandt   
TU München 

Christian Geist  
TU München 

Dominik Peters   
University of Oxford

This paper : extremely large formulas (100m+ variables) 
We use “incremental proof discovery ” by iteratively 
proving stronger results while using knowledge from 
proofs generated for weaker results.

For which number of voters can we avoid the no-show paradox?  
Tight bounds for resolute, set-valued, and probabilistic voting rules:

For at least 12 voters  and at least 4 alternatives ,  
there does not exist a Condorcet-consistent  

voting rule that satisfies participation

For up to 11 voters  and 4 alternatives ,  
there exists a Condorcet-consistent  

voting rule that satisfies participation

a,#1,(1,1,1,1,1,1)
a,#1,(1,1,1,1,1,-1)
a,#1,(1,1,1,-1,1,1)
a,#1,(1,1,1,-1,-1,1)
a,#1,(1,1,1,1,-1,-1)
a,#1,(1,1,1,-1,-1,-1)
b,#1,(-1,1,1,1,1,1)
b,#1,(-1,1,1,1,1,-1)
b,#1,(-1,-1,1,1,1,1)
b,#1,(-1,-1,-1,1,1,1)
b,#1,(-1,1,-1,1,1,-1)
b,#1,(-1,-1,-1,1,1,-1)
c,#1,(1,-1,1,-1,1,1)
c,#1,(1,-1,1,-1,-1,1)

a,#11,(9,11,3,9,1,-9)
a,#11,(11,9,3,7,1,-9)
c,#11,(5,-9,-1,-11,-1,7)
c,#11,(5,-9,-1,-11,-1,5)
c,#11,(3,-11,-1,-9,1,7)
c,#11,(3,-11,-3,-9,1,7)
c,#11,(3,-11,-3,-11,-1,7)
b,#11,(-1,3,-5,-3,5,-3)
b,#11,(-3,3,-7,-3,5,-3)
b,#11,(-3,1,-7,-3,5,-3)
c,#11,(-3,1,-5,-5,5,-1)
a,#11,(3,7,11,-3,9,11)
a,#11,(3,7,11,-3,9,9)
a,#11,(3,7,11,-5,9,11)

Figure 4: Excerpt of look-up table giving
a pairwise Condorcet extension satisfying par-
ticipation for n ! 11 voters (from Theo-
rem 4). Each row lists a weighted tournament as
(gR (a, b), gR (a, c), gR (a, d), gR (b, c), gR (b, d), gR (c, d)) with
a chosen alternative, and with the number of voters
inducing the tournament.

7. SET-VALUED VOTING RULES
A drawback of voting rules, as we deÞned them so far, is

that that the requirement to always return a single winner is
in conßict with basic fairness conditions, namely anonymity
and neutrality. A large part of the social choice litera-
ture therefore deals with set-valued voting rules, where ties
are usually assumed to be eventually broken by some tie-
breaking mechanism.

A set-valued voting rule (sometimes known as a voting
correspondenceor as an irresolute voting rule) is a function
F : R E( N ) ! 2A \ { " } that assigns each preference proÞleR
a non-empty set of alternatives. The function F is a (set-
valued) Condorcet extension if for every preference proÞleR
that admits a Condorcet winner x, we have F (R) = { x} .

Following the work of PŽrez [29] and Jimeno et al. [22],
we seek to study the occurrence of the no-show paradox in
this setting. To do so, we need to deÞne appropriate notions
of participation, and for this we will need to specify agentsÕ
preferences oversets of alternatives. Here, we use the op-
timistic and pessimistic preference extensions. An optimist
prefers sets with better most-preferred alternative, while a
pessimist prefers sets with better least-preferred alternative.
For example, if U = { a, b, d} and V = { b, c} , then an opti-
mist with preferences abcd prefers U to V , while a pessimist
prefers V to U. With these notions, we extend the partici-
pation property to set-valued voting rules.

Definition 3. A set-valued voting rule F satisÞes opti-
mistic participation if max<i F (R + " i ) " i max<i F (R).

A set-valued voting rule F satisÞespessimistic participa-
tion if min<i F (R) " i min<i F (R # i ).

A set-valued voting rule F is called resolute if it al-
ways selects a single alternative, so that for all R we have
|F (R)| = 1 . A (single-valued) voting rule f is naturally
identiÞed with a resolute set-valued voting rule F ; if f sat-
isÞes participation, then this F satisÞes both optimistic and
pessimistic participation. Hence, by Theorem 4, there is
a (resolute) set-valued Condorcet extension F that satis-
Þes both optimistic and pessimistic participation. However,

there might be hope that allowing voting rules to be irres-
olute also allows for participation to be attainable for more
voters, and indeed this is the case.

Theorem 5. There is a set-valued Condorcet extension F
that satisÞes optimistic participation for m = 4 and n ! 16,
and also is Pareto-optimal and a reÞnement of the top cycle.

The SAT solver indicates that no such set-valued voting
rule is pairwise. Theorem 5 is optimal in the sense that
optimistic participation cannot be achieved if we allow for
one more voter.

Theorem 6. There is no set-valued Condorcet extension
that satisÞes optimistic participation for m # 4 and n # 17.

Proof. Let F be such a function, and consider the 10-
voter proÞle R given in Figure 5.

2 3 3 2

a b c d
b d a c
d c b a
c a d b

RR!

a

+ 5 ábacd

c

+ 3 áacbd

+ 2 áabcd

R!
!

b

+ 3 ádbca

d

+ 5 ácdba

+ 2 ádcba

a b

cd

1

17 713

3

a b

cd

9

15 111

1

a b

cd

1

115 11

9

a b

cd

3

137 71

1

Figure 5: Proof diagram for Theorem 6 (optimist).

Suppose that either a $ F (R) or b $ F (R). (The case
of c $ F (R) or d $ F (R) is symmetric.) Then let R! :=
R+2 áabcd. By optimistic participation, we then have either
a $ F (R! ) or b $ F (R! ). If we had a $ F (R! ), then also
a $ F (R! + 3 áacbd) but this proÞle has Condorcet winner
c, and if b $ F (R! ) then also b $ F (R! + 5 ábacd) but this
proÞle has Condorcet winner a. This is a contradiction.

This argument extends to more than 4 alternatives by
appealing to a set-valued analogue of Lemma 1.

Inspecting MoulinÕs original proof [28] shows that it also
establishes an impossibility for optimistic participation (for
25 voters). Apparently unaware of this, Jimeno et al. [22]
explicitly establish such a result for 27 voters and 5 alter-
natives. It is worth observing that each step of the proof
of Theorem 6 involves adding voters to the current proÞle,
and we never remove voters. In light of DeÞnition 3, this is
the reason why the proof establishes a result for optimistic
participation. If we restrict ourselves to deleting voters, we
obtain a result for pessimistic participation.

Theorem 7. There is no set-valued Condorcet extension
that satisÞes pessimistic participation for m # 4 and n # 14.
On the other hand, for m = 4 and n ! 13, there exists such
a set-valued voting rule.
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This Condorcet extension is found by the SAT solver, and 
given by a lookup table like below. The voting rule found 
is also pairwise, Pareto-optimal, a refinement of the top 
cycle, and picks a maximin winner in 99.8% of cases.

Further results: set-valued, probabilistic

For our encoding with exactly 4 alternatives (a, b, c, d) the SAT solver re-
turned unsatisfiable. Together with a (manually-produced) inductive step, 
we deduce an impossibility theorem for arbitrary number of alternatives. 

We then extract a minimal unsatisfiable set (MUS) which !
allows extracting a human-readable proof.

All our impossibility proofs are presented as 
proof diagrams  generated from an MUS. 
A novel way to graphically represent impossibility proofs in social choice. 

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Condorcet Thm 4 Í È Thm 3 È [23] È [28]
Maximin Thm 1 Í È Thm 1
Kemeny Thm 2 Í È Thm 2

optimistic Thm 5 Í È Thm 6
pessimistic Thm 7 Í È Thm 7

strong SD Thm 9 Í È Thm 9

Possibility Impossibility

Table 1: Bounds on the number of voters for which Condorcet extensions can satisfy participation. Green

cells indicate the existence of a Condorcet extension satisfying participation (for m = 4 ). Red cells indicate

that no Condorcet extension satisfies participation (for m > 4).

Our central object of study are voting rules, i.e., functions
that assigns every preference profile a socially preferred al-
ternative. Thus, a voting rule is a function f : RE(N ) æ A.

In this paper, we study voting rules that satisfy
Condorcet-consistency and participation.

Definition 1. A Condorcet extension is a voting rule
that selects the Condorcet winner whenever it exists. Thus,
f is a Condorcet extension if for every preference profile R

that admits a Condorcet winner x, we have f (R) = x. We
say that f is Condorcet-consistent.

Definition 2. A voting rule f satisfies participation if
all voters always weakly prefer voting to not voting, i.e., if
f (R) <i f (R≠ i) for all R œ RN and i œ N with N œ E(N ).

Equivalently, participation requires that for all preference
profiles R not including voter j, we have f (R+ <j ) <j f (R).

4. MAXIMIN AND KEMENYÕS RULE
The proofs of both positive and negative results to come

were obtained through automated techniques that we de-
scribe in Section 5. To become familiar with the kind of
arguments produced in this way, we will now study a more
restricted setting which is of independent interest.

Specifically, let us consider voting rules that select winners
in accordance with the popular maximin and Kemeny rules.
For a preference profile R, an alternative x is a maximin win-
ner if it maximizes min

yœA \{x} gR (x, y); thus, x never gets
defeated too badly in pairwise comparisons. An alternative
x is a Kemeny winner if it is ranked first in some Kemeny
ranking. A Kemeny ranking is a preference relation <K œ R
maximizing agreement with voters’ individual preferences,
i.e., it maximizes the quantity

!
i œN |<K fl <i |.

We call a voting rule a maximin extension (resp. Kemeny
extension) if it always selects a maximin winner (resp. Ke-
meny winner). Since a Condorcet winner, if it exists, is
always the unique maximin and Kemeny winner of a prefer-
ence profile, any such voting rule is also a Condorcet exten-
sion. We can now prove an easy version of Moulin’s theorem
for these more restricted voting rules.

To this end, we first prove a useful lemma allowing us to
extend impossibility proofs for 4 alternatives to also apply if
there are more than 4 alternatives. Its proof gives a first hint
on how Condorcet-consistency and participation interact.

Lemma 1. Suppose that f is a Condorcet extension satis-
fying participation. Let R be a preference profile and B ! A

a set of bad alternatives such that each voter ranks every
x œ B below every y œ A \ B. Then f (R) /œ B.

Proof. By induction on the number of voters |N | in R.
If R consists of a single voter i, then, since f is a Condorcet
extension, f (R) must return i’s top choice, which is not bad.
If R consists of at least 2 voters, and i œ N , then by partic-
ipation f (R) <i f (R ≠ i). If f (R) were bad, then so would
be f (R ≠ i), contradicting the inductive hypothesis.

The following computer-aided proofs, just like the more
complicated proofs to follow, can be understood solely by
carefully examining the corresponding ‘proof diagram’. An
arrow such as R

R

Õ+ abcd indicates that profile R

Õ is
obtained from R by adding a voter abcd, and is read as “if
one of the bold green alternatives (here ab) is selected at
R, then one of them is selected at R

Õ” (by participation).
A circled node a indicates a profile admitting Condorcet
winner a, although in the proofs of Theorems 1 and 2, we use
it to refer to maximin and Kemeny winners, respectively.

Theorem 1. There is no maximin extension that satis-
fies participation for m > 4 and n > 7. (For m = 4 and
n 6 6, such a maximin extension exists.)

Proof. Let f be a maximin extension which satisfies par-
ticipation. Consider the following 6-voter profile R:

1 2 2 1

a b c d
b d a c
d c b a
c a d b

R

c

+ abcd

b

+ dcba

Suppose f (R) œ {a, b}. Adding an abcd vote leads to a
weighted tournament in which alternative c is the unique
maximin winner. But this contradicts participation since
the added voter would benefit from abstaining the election.

Symmetrically, if f (R) œ {c, d}, then adding a dcba vote
leads to a weighted tournament in which b is the maximin
winner, again contradicting participation. The symmetry of
the argument is due to an automorphism of R, namely the
relabelling of alternatives according to abcd ‘æ dcba.

If m > 4, we add new bad alternatives x1, x2, . . . , xm ≠4 to
the bottom of R and of the additional voters. By Lemma 1,
f chooses from {a, b, c, d} at each step, completing the proof.

The existence result for n 6 6 is established by the meth-
ods described in Section 5.

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Condorcet Thm 4 ! " Thm 3 " [23] " [28]

Maximin Thm 1 ! " Thm 1

Kemeny Thm 2 ! " Thm 2

optimistic Thm 5 ! " Thm 6

pessimistic Thm 7 ! " Thm 7

strong SD Thm 9 ! " Thm 9

Possibility Impossibility

Table 1: Bounds on the number of voters for which Condorcet extensions can satisfy participation. Green
cells indicate the existence of a Condorcet extension satisfying participation (for m = 4). Red cells indicate
that no Condorcet extension satisÞes participation (for m ! 4).

Our central object of study are voting rules, i.e., functions
that assigns every preference proÞle a socially preferred al-
ternative. Thus, a voting rule is a function f : R E( N ) ! A.

In this paper, we study voting rules that satisfy
Condorcet-consistency and participation .

Definition 1. A Condorcet extension is a voting rule
that selects the Condorcet winner whenever it exists. Thus,
f is a Condorcet extension if for every preference proÞle R
that admits a Condorcet winner x, we have f (R) = x. We
say that f is Condorcet-consistent.

Definition 2. A voting rule f satisÞes participation if
all voters always weakly prefer voting to not voting, i.e., if
f (R) " i f (R " i ) for all R # R N and i # N with N # E(N ).

Equivalently, participation requires that for all preference
proÞlesR not including voter j , we havef (R +" j ) " j f (R).

4. MAXIMIN AND KEMENYÕS RULE
The proofs of both positive and negative results to come

were obtained through automated techniques that we de-
scribe in Section 5. To become familiar with the kind of
arguments produced in this way, we will now study a more
restricted setting which is of independent interest.

SpeciÞcally, let us consider voting rules that select winners
in accordance with the popular maximin and Kemeny rules.
For a preference proÞleR, an alternative x is a maximin win-
ner if it maximizes miny! A \{ x} gR (x, y); thus, x never gets
defeated too badly in pairwise comparisons. An alternative
x is a Kemeny winner if it is ranked Þrst in some Kemeny
ranking. A Kemeny ranking is a preference relation " K # R
maximizing agreement with votersÕ individual preferences,
i.e., it maximizes the quantity

!
i ! N |" K $ " i |.

We call a voting rule a maximin extension (resp. Kemeny
extension) if it always selects a maximin winner (resp. Ke-
meny winner). Since a Condorcet winner, if it exists, is
always the unique maximin and Kemeny winner of a prefer-
ence proÞle, any such voting rule is also a Condorcet exten-
sion. We can now prove an easy version of MoulinÕs theorem
for these more restricted voting rules.

To this end, we Þrst prove a useful lemma allowing us to
extend impossibility proofs for 4 alternatives to also apply if
there are more than 4 alternatives. Its proof gives a Þrst hint
on how Condorcet-consistency and participation interact.

Lemma 1. Suppose thatf is a Condorcet extension satis-
fying participation. Let R be a preference proÞle andB ! A

a set of bad alternatives such that each voter ranks every
x # B below everyy # A \ B . Then f (R) /# B .

Proof. By induction on the number of voters |N | in R.
If R consists of a single voteri , then, since f is a Condorcet
extension, f (R) must return iÕs top choice, which is not bad.
If R consists of at least 2 voters, and i # N , then by partic-
ipation f (R) " i f (R " i ). If f (R) were bad, then so would
be f (R " i ), contradicting the inductive hypothesis.

The following computer-aided proofs, just like the more
complicated proofs to follow, can be understood solely by
carefully examining the corresponding Ôproof diagramÕ. An
arrow such as R R"+ abcd indicates that proÞle R" is
obtained from R by adding a voter abcd, and is read as Òif
one of the bold green alternatives (here ab) is selected at
R, then one of them is selected at R"Ó (by participation).
A circled node a indicates a proÞle admitting Condorcet
winner a, although in the proofs of Theorems 1 and 2, we use
it to refer to maximin and Kemeny winners, respectively.

Theorem 1. There is no maximin extension that satis-
Þes participation for m ! 4 and n ! 7. (For m = 4 and
n # 6, such a maximin extension exists.)

Proof. Let f be a maximin extension which satisÞes par-
ticipation. Consider the following 6-voter proÞle R:

1 2 2 1
a b c d
b d a c
d c b a
c a d b

R
c

+ abcd

b

+ dcba

Supposef (R) # { a, b} . Adding an abcd vote leads to a
weighted tournament in which alternative c is the unique
maximin winner. But this contradicts participation since
the added voter would beneÞt from abstaining the election.

Symmetrically, if f (R) # { c, d} , then adding a dcba vote
leads to a weighted tournament in which b is the maximin
winner, again contradicting participation. The symmetry of
the argument is due to an automorphism of R, namely the
relabelling of alternatives according to abcd %! dcba.

If m > 4, we add new bad alternatives x1, x2, . . . , xm # 4 to
the bottom of R and of the additional voters. By Lemma 1,
f chooses from{ a, b, c, d} at each step, completing the proof.

The existence result for n # 6 is established by the meth-
ods described in Section 5.

How to read the diagram: 

profile R’ is obtained from R by adding a voter with 
preferences abcd. If any of the green bold alternatives 
is selected at R, then one must be selected at R’ by 
participation. 

profile which admits Condorcet winner a.

Set-valued voting rules with the optimistic and pes-
simistic set extensions (i.e., voters like a set according to 
the best/worst alternative in it). Our impossibility results 
are significant improvements over prior work: for the pes-
simistic extension, the previous result needs 971 voters! 

We also show that no probabilistic voting rule can be 
Condorcet-consistent and satisfy strong SD-participation, 
answering an open question (Brandl et al., AAMAS 015).

The proof shown here (and the other proofs in the paper) !
exhibit a curious symmetry: 

The initial profile R is invariant under relabelling alternatives by !
abcd !  dcba. Thus, the left-hand half of the proof is symmetric to 

the right-hand half. This efficient style of proof was discovered by the 
computer; previous proofs discovered by humans are asymmetric. 

2 3 3 2

a b c d
b d a c
d c b a
c a d b

R

a
+ 2 ábadc

b

+ 3 ádcba

! abcd

! 2 ácabd

! dcab

c

+ acdb

! 2 ábdca

+ 2 áabcd

b

+ dbac

! 2 ácabd

c

+ 3 áabcd

! dcba
d

+ 2 ácdab

! 2 ábdca

! abdc

+ 2 ádcba

Figure 1: Computer-aided proof of Theorem 3 in graphical form, showing that there is no Condorcet extension
that satisÞes participation for m > 4 and n > 12. See Section 4 for an explanation of how to read this diagram.

(and indeed a tight) bound, and additionally exhibits a lot
of symmetry that was also present in the MUS we extracted.

6. MAIN RESULT
We are now in a position to state and prove our main

claim that Condorcet extensions cannot avoid the no-show
paradox for 12 or more voters (when there are at least 4 al-
ternatives), and that this result is optimal.

Theorem 3. There is no Condorcet extension that satis-
fies participation for m > 4 and n > 12.

Proof. The proof follows the structure depicted in Fig-
ure 1. Let R be the preference profile shown there.

Since R remains fixed after relabelling alternatives ac-
cording to abcd "# dcba, we may assume without loss of
generality that f (R) $ { a, b} . (An explicit proof in case
f (R) $ { c, d} is indicated in Figure 1.)

By participation, it follows from f (R) $ { a, b} that also
f (R! := R + 2 áabcd) $ { a, b} since the voters with prefer-
ences abcd cannot be worse o! by joining the electorate. If
f (R! ) = a, again by participation, removing 2 voters with
preferences bdca does not change the winning alternative
(so f (R! ! 2 ábdca) = a), and neither does adding acdb, so
f (R! ! 2 ábdca + acdb) = a, which, however, is in conflict
with R! ! 2 ábdca + acdb having a Condorcet winner, c.

Thus we must have f (R! ) = b, which implies that f (R! !
dcab) = b, and thus f (R" := R! ! dcab! 2ácabd) $ { b, d} .

We again proceed by cases: If f (R" ) = b, we can add
a voter badc to obtain a profile with Condorcet winner a,
which contradicts participation. But then, if f (R" ) = d, we
get that f (R" ! abcd) = d and, by another application of
participation, that f (R" ! abcd + 3 ádcba) = d in contrast
to the existence of Condorcet winner b, a contradiction.

If m > 4, we add bad alternatives x1, x2, . . . , xm ! 4 to the
bottom of R and all other voters. By Lemma 1, f chooses
from { a, b, c, d} at each step, completing the proof.

The following result establishes that our bound on the
number of voters is tight. A very useful feature of our
computer-aided approach is that we can easily add addi-
tional requirements for the desired voting rule. Two com-
mon requirements for voting rules are that they should only

return alternatives that are Pareto-optimal and contained in
the top cycle (also known as the Smith set) (see, e.g., [17]).

Theorem 4. There is a Condorcet extension f that sat-
isfies participation for m = 4 and n 6 11. Moreover, f is
pairwise, Pareto-optimal, and a refinement of the top cycle.

The Condorcet extension f is given as a look-up table,
which is derived from the output of a SAT solver. The look-
up table lists all 1, 204, 215 weighted tournaments inducible
by up to 11 voters and assigns each an output alternative
(see Figure 2 for an excerpt). The relevant text file has a
size of 28 MB (gzipped 4.5 MB) and is available as part of
an arXiv version of this paper [10].

Comparing this voting rule with known voting rules, it
turns out that it picks a maximin winner in 99.8% and a Ke-
meny winner in 98% of all weighted tournaments. Moreover,
the rule agrees with the maximin rule with lexicographic
tie-breaking on 95% of weighted tournaments. The similar-
ity with the maximin rule is interesting insofar as a well-
documented flaw of the maximin rule is that it fails to be a
refinement of the top cycle (and may even return Condorcet
losers). Our computer-generated rule always picks from the
top cycle while it remains very close to the maximin rule.

80% of the considered weighted tournaments admit a Con-
dorcet winner, which uniquely determines the output of the
rule; this can be used to reduce the size of the look-up table.

7. SET-VALUED VOTING RULES
A drawback of voting rules, as we defined them so far, is

that that the requirement to always return a single winner is
in conflict with basic fairness conditions, namely anonymity
and neutrality. A large part of the social choice litera-
ture therefore deals with set-valued voting rules, where ties
are usually assumed to be eventually broken by some tie-
breaking mechanism.

A set-valued voting rule (sometimes known as a voting
correspondence or as an irresolute voting rule) is a function
F : R E( N ) # 2A \ { %} that assigns each preference profile R
a non-empty set of alternatives. The function F is a (set-
valued) Condorcet extension if for every preference profile R
that admits a Condorcet winner x, we have F (R) = { x} .

Following the work of Pérez [29] and Jimeno et al. [22],
we seek to study the occurrence of the no-show paradox in


